Friday, January 9, 2026
No menu items!
HomeNatureHigh-voltage anode-free sodium–sulfur batteries | Nature

High-voltage anode-free sodium–sulfur batteries | Nature

  • Liu, R. et al. Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626, 98–104 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Pan, H. et al. Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2, 813–820 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liao, M. et al. Hybrid polymer network cathode-enabled soluble-polysulfide-free lithium–sulfur batteries. Nat. Sustain. 7, 1709–1718 (2024).

    Article 

    Google Scholar
     

  • Bai, R. et al. Preferable single-atom catalysts enabled by natural language processing for high energy density Na-S batteries. Nat. Commun. 16, 5827 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, L. et al. A critical review on room-temperature sodium-sulfur batteries: from research advances to practical perspectives. Adv. Mater. 36, 2402337 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yao, W. et al. Rechargeable metal-sulfur batteries: key materials to mechanisms. Chem. Rev. 124, 4935–5118 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, J., Bhargav, A., Shin, W. & Manthiram, A. Stable dendrite-free sodium–sulfur batteries enabled by a localized high-concentration electrolyte. J. Am. Chem. Soc. 143, 20241–20248 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Lei, Y.-J. et al. Understanding the charge transfer effects of single atoms for boosting the performance of Na–S batteries. Nat. Commun. 15, 3325 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mamantov, G. et al. The use of tetravalent sulfur in molten chloroaluminate secondary batteries. J. Electrochem. Soc. 127, 2319 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mamantov, G. et al. SCl3+AlCl4: improved synthesis and characterization. J. Inorg. Nucl. Chem. 41, 260–261 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Steudel, R., Jensen, D. & Plinke, B. Low temperature Raman spectra of dichlorosulfane (SCl2), tetrachlorosulfurane (SCl4), dichlorodisulfane (S2Cl2) and dichlorodiselane (Se2Cl2). Z. Naturforsch. B. 42, 163–168 (1987).

    Article 

    Google Scholar
     

  • Dezarnaud, C., Tronc, M. & Modelli, A. Shape resonances in low-energy electron transmission and sulfur K-shell photoabsorption spectroscopies: CH3SH, C2H5SH, (CH3)2S, (C2H5)2S, C6H5SH, C6H5SCH3, CH3SCN, CH3NCS, SCl2. Chem. Phys. 156, 129–140 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, G. et al. Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 596, 523–530 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Y. et al. A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na–CO2 batteries. Chem. Sci. 10, 4306–4312 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hu, C. et al. Carbonate ester-based sodium metal battery with high-capacity retention at −50 °C enabled by weak solvents and electrodeposited anode. Angew. Chem. Int. Ed. 63, e202407075 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dementjev, A. P. et al. X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam. Relat. Mater. 9, 1904–1907 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Electrochemically and thermally stable inorganics–rich solid electrolyte interphase for robust lithium metal batteries. Adv. Mater. 36, 2307370 (2024).

    Article 

    Google Scholar
     

  • Hu, L. et al. Restructuring electrolyte solvation by a versatile diluent toward beyond 99.9% Coulombic efficiency of sodium plating/stripping at ultralow temperatures. Adv. Mater. 36, 2312161 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, P. et al. Inorganic–organic hybrid multifunctional solid electrolyte interphase layers for dendrite-free sodium metal anodes. Angew. Chem. Int. Ed. 62, e202312413 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, J. et al. Tuning the solvation structure with salts for stable sodium-metal batteries. Nat. Energy 9, 446–456 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, B. et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 30, 1801334 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhuang, R. et al. Fluorinated porous frameworks enable robust anode-less sodium metal batteries. Sci. Adv. 9, eadh8060 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tan, S. et al. Synchronized breathing in anion-derived interphases. ACS Energy Lett. 10, 3746–3754 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Feng, G. et al. Imaging solid–electrolyte interphase dynamics using operando reflection interference microscopy. Nat. Nanotechnol. 18, 780–789 (2023).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Geng, M. et al. A stable anode-free Na–S full cell at room temperature. Energy Storage Mater. 52, 230–237 (2022).

    Article 

    Google Scholar
     

  • Zheng, S. et al. Construction of dangling and staggered stacking aldehyde in covalent organic frameworks for 2e oxygen reduction reaction. Carbon Neutraliz. 3, 415–422 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Demirci, U. B., Akdim, O. & Miele, P. Aluminum chloride for accelerating hydrogen generation from sodium borohydride. J. Power Sources 192, 310–315 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries. Nat. Energy 7, 511–519 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hueso, K., Armand, M. & Rojo, T. High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734–749 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage. Joule 1, 306–327 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, C. et al. High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Brinkkötter, M. et al. Influence of anion structure on ion dynamics in polymer gel electrolytes composed of poly(ionic liquid), ionic liquid and Li salt. Electrochim. Acta 237, 237–247 (2017).

    Article 

    Google Scholar
     

  • Wang, P. et al. Niobium phosphide-induced sulfur cathode interface with fast lithium-ion flux enables highly stable lithium–sulfur catalytic conversion. Angew. Chem. Int. Ed. 64, e202502255 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Gardiner, D. J. & Graves, P. R. in Practical Raman Spectroscopy (eds Gardiner, D. J. & Graves, P. R.) Ch. 1 (Springer, 1989).

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mathew, K. et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084160 (2014).

    Article 

    Google Scholar
     

  • Jiang, Y. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments