Friday, December 19, 2025
No menu items!
HomeNaturePalaeometabolomes yield biological and ecological profiles at early human sites

Palaeometabolomes yield biological and ecological profiles at early human sites

  • Zhang, A., Sun, H., Wang, P., Han, Y. & Wang, X. Recent and potential developments of biofluid analyses in metabolomics. J. Proteomics 75, 1079–1088 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Endo, A., Murakawa, S. & Shimizu, H. Purification and properties of collagenase from a Streptomyces species. J. Biochem. 102, 161–170 (1987).

    Article 

    Google Scholar
     

  • Ashley, G. M. et al. Paleoenvironmental and paleoecological reconstruction of a freshwater oasis in savannah grassland at FLK North, Olduvai Gorge, Tanzania. Quat. Res. 74, 333–343 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Barboni, D. et al. Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quat. Res. 74, 344–354 (2010).

    Article 

    Google Scholar
     

  • Fernández-Jalvo, Y. et al. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). J. Hum. Evol. 34, 137–172 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Kovarovic, K., Slepkov, R. & McNulty, K. P. Ecological continuity between Lower and Upper Bed II, Olduvai Gorge, Tanzania. J. Hum. Evol. 64, 538–555 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Euw, S. V et al. Organization of bone mineral: the role of mineral–water interactions. Geosciences 8, 466 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar
     

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473–2478 (2002).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padian, K. & Ricqlès, A. D. Inferring the physiological regimes of extinct vertebrates: methods, limits and framework. Phil. Trans. R. Soc. B 375, 20190147 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lüdecke, T. et al. Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Karonga Basin, East African Rift System). J. Hum. Evol. 90, 163–175 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schrenk, F., Bromage, T. G., Sandrock, O. & Gorthner, A. Paleoecology of the Malawi Rift: Vertebrate and invertebrate faunal contexts of the Chiwondo Beds, northern Malawi. J. Hum. Evol. 28, 59–70 (1995).

    Article 

    Google Scholar
     

  • Huber, B., Larsen, T., Spengler, R. N. & Boivin, N. How to use modern science to reconstruct ancient scents. Nat. Hum. Behav. 6, 611–614 (2020).

    Article 

    Google Scholar
     

  • Badillo-Sanchez, D., Davies-Barrett, A. M., Ruber, M. S., Jones, D. J. L. & Inskip, S. A. Archaeometabolomics characterizes phenotypic differences in human cortical bone at a molecular level relating to tobacco use. Sci. Adv. 10, eadn9317 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enlow, D. H. Principles of Bone Remodeling (Charles C. Thomas, 1963).

  • Albuquerque, U. P., Ramos, M. A. & Melo, J. G. New strategies for drug discovery in tropical forests based on ethnobotanical and chemical ecological studies. J. Ethnopharmacol. 140, 197–201 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Balunas, M. J. & Kinghorn, A. D. Drug discovery from medicinal plants. Life Sci. 78, 431–441 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumner, L. W., Mendes, P. & Dixon, R. A. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiemann, J. A Fundamental Exploration of the Interactions Between Minerals and Life’s Building Blocks in Deep Time. PhD thesis, Yale Univ. (2021).

  • Colleary, C., Lamadrid, H. M, O’Reilly, S. S, Dolocan, A. & Nesbitt, S. J Molecular preservation in mammoth bone and variation based on burial environment. Sci. Rep. 11, 2662 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweitzer, M. H. et al. Heme compounds in dinosaur trabecular bone. Proc. Natl Acad. Sci. USA 94, 6291–6296 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiemann, J. et al. Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ 5, e3706 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boatman, E. M. Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex. Sci. Rep. 9, 15678 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertazzo, S. et al. Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nat. Commun. 6, 7352 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, J., Kojasoy, V., Porter, G. J. & Raines, R. T. Pauli exclusion by n→π* interactions: implications for paleobiology. ACS Cent. Sci. 10, 1829–1834 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiemann, J. et al. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat. Commun. 9, 4741 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filipowska, J., Tomaszewski, K. A., Niedźwiedzki, Ł, Walocha, J. A. & Niedźwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20, 291–302 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godwin, L., Tariq, M. A. & Crane, J. S. in StatPearls (StatPearls Publishing, 2022).

  • Wongdee, K. et al. Osteoblasts express claudins and tight junction-associated proteins. Histochem. Cell Biol. 130, 79–90 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinger, J. M. & Holtrop, M. E. An ultrastructural study of bone cells: The occurrence of microtubules, microfilaments and tight junctions. Calcif. Tissue Res. 14, 15–29 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prêle, C. M., Horton, M. A., Caterina, P. & Stenbeck, G. Identification of the molecular mechanisms contributing to polarized trafficking in osteoblasts. Exp. Cell. Res. 282, 24–34 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Saitta, E. T. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLife 8, e46205 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brettell, R. C. et al. ‘Choicest unguents’: molecular evidence for the use of resinous plant exudates in late Roman mortuary rites in Britain. J. Archaeolog. Sci. 53, 639–648 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zimmermann, M. et al. Metabolomics-based analysis of miniature flask contents identifies tobacco mixture use among the ancient Maya. Sci. Rep. 11, 1590 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Single-cell mass spectrometry analysis of metabolites facilitated by cell electro-migration and electroporation. Anal. Chem. 92, 10138–10144 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bromage, T. G., Goldman, H. M., McFarlin, S. C., Perez-Ochoa, A. & Boyde, A. Confocal scanning optical microscopy of a 3-million-year-old Australopithecus afarensis femur. Scanning Microsc. 31, 1–10 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Welhaven, H. D. et al. The cortical bone metabolome of C57BL/6J mice is sexually dimorphic. J. Bone Miner. Res. 6, e10654 (2022).

    CAS 

    Google Scholar
     

  • Denys, C., Reed, D. N. & Dauphin, Y. Deciphering alterations of rodent bones through in vitro digestion: an avenue to understand pre-diagenetic agents? Minerals 13, 124 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fernandez-Jalvo, Y., Andrews, P., Sevilla, P. & Requejo, V. Digestion versus abrasion features in rodent bones. Lethaia 47, 323–336 (2014).

    Article 

    Google Scholar
     

  • Feye, K. M., Baxter, M. F. A., Tellez-Isaias, G., Kogut, M. H. & Ricke, S. C. Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poultry Sci. 99, 653–659 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ashley, G. M. et al. A spring and wooded habitat at FLK Zinj and their relevance to origins of human behavior. Quat. Res. 74, 304–314 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Elsas, J. D. V., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 5, 173–183 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Valdezate, S. in Encyclopedia of Infection and Immunity Vol. 1 (ed. Rezaei, N.) 589–613 (Elsevier, 2022).

  • Loria, R., Bukhalid, R. A., Fry, B. A. & King, R. R. Plant pathogenicity in the genus Streptomyces. Plant Dis. 81, 836–846 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velásquez, A. C., Castroverde, C. D. M. & He, S. Y. Plant and pathogen warfare under changing climate conditions. Curr. Biol. 28, R619–R634 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Money, N. P. in The Fungi (eds Watkinson, S. C., Boddy, L. & Money, N. P.) 1–36 (Academic Press, 2016).

  • Fern, K. Asparagus africanus. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Asparagus+africanus (2025).

  • Newton, L. E. in Aloes: The Genus Aloe Medicinal and Aromatic Plants—Industrail Profiles (ed. Reynolds, T.) 1–16 (CRC Press, 2004).

  • Harris, D. J. & Wortley, A. H. Monograph of Aframomium (Zingiberaceae), Vol. 104, 1–204 (American Society of Plant Taxonomists, 2018).

  • Fern, K. Piper capense. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Piper+capense (2025).

  • Fern, K. Kigelia africana. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Kigelia+africana (2025).

  • Labrecht, F. L. Aspects of evolution and ecology of tsetse flies and trypanosomiasis in prehistoric African environments. J. Afr. Hist. 5, 1–24 (1964).

    Article 

    Google Scholar
     

  • Pollock, J. N. (ed.) Training Manual for Tsetse Control Personnel, Vol. 2. Ecology and Behaviour of Tsetse (Food and Agriculture Organization of the United Nations, 1982).

  • Kasozi, K. I. et al. Epidemiology of Trypanosomiasis in wildlife—implications for humans at the wildlife interface in Africa. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.621699 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souron, A. in Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 29–38 (Cambridge Univ. Press, 2017).

  • Sandrock, O., Kullmer, O., Schrenk, F., Juwayeyi, Y. M. & Bromage, T. G. in Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence (eds Bobe, R. Alemseged, Z. & Behrensmeyer, A. K.) 315–332 (Springer, 2007).

  • Reed, K. E. et al. in African Paleoecology and Human Evolution (eds Reynolds, S. C. & Bobe, R.) 66–81 (Cambridge Univ. Press, 2022).

  • Boyde, A. & Jones, S. J. Aspects of anatomy and development of bone: the nm, μm and mm hierarchy. Adv. Organ Biol. 5, 3–44 (1998).

    Article 

    Google Scholar
     

  • Buss, D. J., Kröger, R., McKee, M. D. & Reznikov, N. Hierarchical organization of bone in three dimensions: a twist of twists. J. Struct. Biol. X. 30 6, 100057 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Grandfield, K., Vuong, V. & Schwarcz, H. P. Ultrastructure of bone: hierarchical features from nanometer to micrometer scale revealed in focused ion beam sections in the tem. Calcif. Tissue Int. 103, 606–616 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, L. C. & Mika, H. The pH dependence of the surface concentrations of calcium and phosphorus on hydroxyapatite in aqueous solutions. J. Soil Sci. 30, 247–258 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Bell, L. C., Posner, A. M. & Quirk, J. P. Surface charge characteristics of hydroxyapatite and fluorapatite. Nature 239, 515–517 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Itoh, D., Yoshimoto, N. & Yamamoto, S. Retention mechanism of proteins in hydroxyapatite chromatography – multimodal interaction based protein separations: a model study. Curr. Protein Pept. Sci. 20, 75–81 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J. & Turner-Walker, G. Diagenesis of archaeological bone and tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491, 21–37 (2018).

    Article 

    Google Scholar
     

  • Buffrénil, V. D. Vertebrate Skeletal Histology and Paleohistology (CRC Press, 2021).

  • Jans, M. M. E. in Current Developments in Bioerosion (eds Wisshak, M. & Tapanila, L.) 397–413 (Springer, 2008).

  • Jackes, M., Sherburne, R., Lubell, D., Barker, C. & Wayman, M. Destruction of microstructure in archaeological bone: a case study from Portugal. Int. J. Osteoarchaeol. 11, 415–432 (2001).

    Article 

    Google Scholar
     

  • Turner–Walker, G. & Syversen, U. Quantifying histological changes in archaeological bones using BSE–SEM image analysis. Archaeometry 44, 461–468 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Buss, D. J., Reznikov, N. & McKee, M. D. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J. Struct. Biol. 212, 107603 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKee, M. D., Buss, D. J. & Reznikov, N. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization. J. Struct. Biol. 214, 107823 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reznikov, N. et al. Biological stenciling of mineralization in the skeleton: local enzymatic removal of inhibitors in the extracellular matrix. Bone 138, 115447 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kroeger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360, eaao2189 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertassoni, L. E. & Swain, M. V. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J. Mech. Behav. Biomed. Mater. 38, 91–104 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott, J. E. Proteoglycan-fibrillar collagen interaction. Biochem. J 252, 313–323 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy asmineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–615 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, W. R. & Guzelsu, N. Ion concentration effects on bone streaming potentials and zeta potentials. Biomaterials 14, 331–336 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Water-mediated structuring of bone apatite. Nat. Mater. 12, 1144–1153 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duer, M. J. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone. J. Magn. Reson. 253, 98–110 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fullerton, G. D. & Amurao, M. R. Evidence that collagen and tendon have monolayer water coverage in the native state. Cell Biol. Int. 30, 56–65 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stigter, D. Evaluation of the counterion condensation theory of polyelectrolytes. Biophys. J. 69, 380–388 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Israelachvili, J. N. Intermolecular and Surface Forces, 3rd edn (Academic Press, 2015).

  • Urbic, T. Ions increase strength of hydrogen bond in water. Chem. Phys. Lett. 610–611, 159–162 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, W., Griffanti, G., Tamimi, F., McKee, M. D. & Nazhat, S. N. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J. Struct. Biol. 212, 107592 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Metabolic acids impact bone mineral maturation. Preprint at bioRxiv https://doi.org/10.1101/2022.09.21.508894 (2022).

  • Hu, Y.-Y., Rawal, A. & Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl Acad. Sci. USA 107, 22425–22429 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasi-Rad, S. & Rad, H. S. Quantification of human cortical bone bound and free water in vivo with ultrashort echo tiome MR imaging: a model-based aproach. Radiology 283, 862–872 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Leakey, L. S. B. Olduvai Gorge 1951–61: Volume 1, A Preliminary Report on the Geology and Fauna (Cambridge Univ. Press, 1965).

  • Bromage, T. G. et al. Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat. Rec. 274B, 157–168 (2003).

    Article 

    Google Scholar
     

  • Pang, S. et al. Comparison of different protocols for demineralization of cortical bone. Sci. Rep. 11, 7012 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, J., Zhang, G. & Neubert, T. A. Metabolomic analysis of glioma cells using nanoflow liquid chromatography–tandem mass spectrometry. Methods Mol. Biol. 1741, 125–134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J. 40, e108428 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinitcyn, P. et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol. 39, 1563–1573 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waskom, M. L. Seaborn: statistical data visualization. J. Open Source Softw. https://doi.org/10.21105/joss.03021 (2021).

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments