Zhang, A., Sun, H., Wang, P., Han, Y. & Wang, X. Recent and potential developments of biofluid analyses in metabolomics. J. Proteomics 75, 1079–1088 (2012).
Endo, A., Murakawa, S. & Shimizu, H. Purification and properties of collagenase from a Streptomyces species. J. Biochem. 102, 161–170 (1987).
Ashley, G. M. et al. Paleoenvironmental and paleoecological reconstruction of a freshwater oasis in savannah grassland at FLK North, Olduvai Gorge, Tanzania. Quat. Res. 74, 333–343 (2010).
Barboni, D. et al. Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quat. Res. 74, 344–354 (2010).
Fernández-Jalvo, Y. et al. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). J. Hum. Evol. 34, 137–172 (1998).
Kovarovic, K., Slepkov, R. & McNulty, K. P. Ecological continuity between Lower and Upper Bed II, Olduvai Gorge, Tanzania. J. Hum. Evol. 64, 538–555 (2013).
Euw, S. V et al. Organization of bone mineral: the role of mineral–water interactions. Geosciences 8, 466 (2018).
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473–2478 (2002).
Padian, K. & Ricqlès, A. D. Inferring the physiological regimes of extinct vertebrates: methods, limits and framework. Phil. Trans. R. Soc. B 375, 20190147 (2020).
Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361 (2012).
Lüdecke, T. et al. Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Karonga Basin, East African Rift System). J. Hum. Evol. 90, 163–175 (2016).
Schrenk, F., Bromage, T. G., Sandrock, O. & Gorthner, A. Paleoecology of the Malawi Rift: Vertebrate and invertebrate faunal contexts of the Chiwondo Beds, northern Malawi. J. Hum. Evol. 28, 59–70 (1995).
Huber, B., Larsen, T., Spengler, R. N. & Boivin, N. How to use modern science to reconstruct ancient scents. Nat. Hum. Behav. 6, 611–614 (2020).
Badillo-Sanchez, D., Davies-Barrett, A. M., Ruber, M. S., Jones, D. J. L. & Inskip, S. A. Archaeometabolomics characterizes phenotypic differences in human cortical bone at a molecular level relating to tobacco use. Sci. Adv. 10, eadn9317 (2024).
Enlow, D. H. Principles of Bone Remodeling (Charles C. Thomas, 1963).
Albuquerque, U. P., Ramos, M. A. & Melo, J. G. New strategies for drug discovery in tropical forests based on ethnobotanical and chemical ecological studies. J. Ethnopharmacol. 140, 197–201 (2012).
Balunas, M. J. & Kinghorn, A. D. Drug discovery from medicinal plants. Life Sci. 78, 431–441 (2005).
Sumner, L. W., Mendes, P. & Dixon, R. A. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836 (2003).
Wiemann, J. A Fundamental Exploration of the Interactions Between Minerals and Life’s Building Blocks in Deep Time. PhD thesis, Yale Univ. (2021).
Colleary, C., Lamadrid, H. M, O’Reilly, S. S, Dolocan, A. & Nesbitt, S. J Molecular preservation in mammoth bone and variation based on burial environment. Sci. Rep. 11, 2662 (2021).
Schweitzer, M. H. et al. Heme compounds in dinosaur trabecular bone. Proc. Natl Acad. Sci. USA 94, 6291–6296 (1997).
Wiemann, J. et al. Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ 5, e3706 (2017).
Boatman, E. M. Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex. Sci. Rep. 9, 15678 (2019).
Bertazzo, S. et al. Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nat. Commun. 6, 7352 (2015).
Yang, J., Kojasoy, V., Porter, G. J. & Raines, R. T. Pauli exclusion by n→π* interactions: implications for paleobiology. ACS Cent. Sci. 10, 1829–1834 (2024).
Wiemann, J. et al. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat. Commun. 9, 4741 (2018).
Filipowska, J., Tomaszewski, K. A., Niedźwiedzki, Ł, Walocha, J. A. & Niedźwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20, 291–302 (2017).
Godwin, L., Tariq, M. A. & Crane, J. S. in StatPearls (StatPearls Publishing, 2022).
Wongdee, K. et al. Osteoblasts express claudins and tight junction-associated proteins. Histochem. Cell Biol. 130, 79–90 (2008).
Weinger, J. M. & Holtrop, M. E. An ultrastructural study of bone cells: The occurrence of microtubules, microfilaments and tight junctions. Calcif. Tissue Res. 14, 15–29 (1974).
Prêle, C. M., Horton, M. A., Caterina, P. & Stenbeck, G. Identification of the molecular mechanisms contributing to polarized trafficking in osteoblasts. Exp. Cell. Res. 282, 24–34 (2003).
Saitta, E. T. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLife 8, e46205 (2019).
Brettell, R. C. et al. ‘Choicest unguents’: molecular evidence for the use of resinous plant exudates in late Roman mortuary rites in Britain. J. Archaeolog. Sci. 53, 639–648 (2015).
Zimmermann, M. et al. Metabolomics-based analysis of miniature flask contents identifies tobacco mixture use among the ancient Maya. Sci. Rep. 11, 1590 (2021).
Li, Z. et al. Single-cell mass spectrometry analysis of metabolites facilitated by cell electro-migration and electroporation. Anal. Chem. 92, 10138–10144 (2020).
Bromage, T. G., Goldman, H. M., McFarlin, S. C., Perez-Ochoa, A. & Boyde, A. Confocal scanning optical microscopy of a 3-million-year-old Australopithecus afarensis femur. Scanning Microsc. 31, 1–10 (2009).
Welhaven, H. D. et al. The cortical bone metabolome of C57BL/6J mice is sexually dimorphic. J. Bone Miner. Res. 6, e10654 (2022).
Denys, C., Reed, D. N. & Dauphin, Y. Deciphering alterations of rodent bones through in vitro digestion: an avenue to understand pre-diagenetic agents? Minerals 13, 124 (2023).
Fernandez-Jalvo, Y., Andrews, P., Sevilla, P. & Requejo, V. Digestion versus abrasion features in rodent bones. Lethaia 47, 323–336 (2014).
Feye, K. M., Baxter, M. F. A., Tellez-Isaias, G., Kogut, M. H. & Ricke, S. C. Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poultry Sci. 99, 653–659 (2020).
Ashley, G. M. et al. A spring and wooded habitat at FLK Zinj and their relevance to origins of human behavior. Quat. Res. 74, 304–314 (2010).
Elsas, J. D. V., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 5, 173–183 (2011).
Valdezate, S. in Encyclopedia of Infection and Immunity Vol. 1 (ed. Rezaei, N.) 589–613 (Elsevier, 2022).
Loria, R., Bukhalid, R. A., Fry, B. A. & King, R. R. Plant pathogenicity in the genus Streptomyces. Plant Dis. 81, 836–846 (1997).
Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).
Velásquez, A. C., Castroverde, C. D. M. & He, S. Y. Plant and pathogen warfare under changing climate conditions. Curr. Biol. 28, R619–R634 (2018).
Money, N. P. in The Fungi (eds Watkinson, S. C., Boddy, L. & Money, N. P.) 1–36 (Academic Press, 2016).
Fern, K. Asparagus africanus. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Asparagus+africanus (2025).
Newton, L. E. in Aloes: The Genus Aloe Medicinal and Aromatic Plants—Industrail Profiles (ed. Reynolds, T.) 1–16 (CRC Press, 2004).
Harris, D. J. & Wortley, A. H. Monograph of Aframomium (Zingiberaceae), Vol. 104, 1–204 (American Society of Plant Taxonomists, 2018).
Fern, K. Piper capense. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Piper+capense (2025).
Fern, K. Kigelia africana. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Kigelia+africana (2025).
Labrecht, F. L. Aspects of evolution and ecology of tsetse flies and trypanosomiasis in prehistoric African environments. J. Afr. Hist. 5, 1–24 (1964).
Pollock, J. N. (ed.) Training Manual for Tsetse Control Personnel, Vol. 2. Ecology and Behaviour of Tsetse (Food and Agriculture Organization of the United Nations, 1982).
Kasozi, K. I. et al. Epidemiology of Trypanosomiasis in wildlife—implications for humans at the wildlife interface in Africa. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.621699 (2021).
Souron, A. in Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 29–38 (Cambridge Univ. Press, 2017).
Sandrock, O., Kullmer, O., Schrenk, F., Juwayeyi, Y. M. & Bromage, T. G. in Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence (eds Bobe, R. Alemseged, Z. & Behrensmeyer, A. K.) 315–332 (Springer, 2007).
Reed, K. E. et al. in African Paleoecology and Human Evolution (eds Reynolds, S. C. & Bobe, R.) 66–81 (Cambridge Univ. Press, 2022).
Boyde, A. & Jones, S. J. Aspects of anatomy and development of bone: the nm, μm and mm hierarchy. Adv. Organ Biol. 5, 3–44 (1998).
Buss, D. J., Kröger, R., McKee, M. D. & Reznikov, N. Hierarchical organization of bone in three dimensions: a twist of twists. J. Struct. Biol. X. 30 6, 100057 (2022).
Grandfield, K., Vuong, V. & Schwarcz, H. P. Ultrastructure of bone: hierarchical features from nanometer to micrometer scale revealed in focused ion beam sections in the tem. Calcif. Tissue Int. 103, 606–616 (2018).
Bell, L. C. & Mika, H. The pH dependence of the surface concentrations of calcium and phosphorus on hydroxyapatite in aqueous solutions. J. Soil Sci. 30, 247–258 (1979).
Bell, L. C., Posner, A. M. & Quirk, J. P. Surface charge characteristics of hydroxyapatite and fluorapatite. Nature 239, 515–517 (1972).
Itoh, D., Yoshimoto, N. & Yamamoto, S. Retention mechanism of proteins in hydroxyapatite chromatography – multimodal interaction based protein separations: a model study. Curr. Protein Pept. Sci. 20, 75–81 (2018).
Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J. & Turner-Walker, G. Diagenesis of archaeological bone and tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491, 21–37 (2018).
Buffrénil, V. D. Vertebrate Skeletal Histology and Paleohistology (CRC Press, 2021).
Jans, M. M. E. in Current Developments in Bioerosion (eds Wisshak, M. & Tapanila, L.) 397–413 (Springer, 2008).
Jackes, M., Sherburne, R., Lubell, D., Barker, C. & Wayman, M. Destruction of microstructure in archaeological bone: a case study from Portugal. Int. J. Osteoarchaeol. 11, 415–432 (2001).
Turner–Walker, G. & Syversen, U. Quantifying histological changes in archaeological bones using BSE–SEM image analysis. Archaeometry 44, 461–468 (2002).
Buss, D. J., Reznikov, N. & McKee, M. D. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J. Struct. Biol. 212, 107603 (2020).
McKee, M. D., Buss, D. J. & Reznikov, N. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization. J. Struct. Biol. 214, 107823 (2022).
Reznikov, N. et al. Biological stenciling of mineralization in the skeleton: local enzymatic removal of inhibitors in the extracellular matrix. Bone 138, 115447 (2020).
Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kroeger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360, eaao2189 (2018).
Bertassoni, L. E. & Swain, M. V. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J. Mech. Behav. Biomed. Mater. 38, 91–104 (2014).
Scott, J. E. Proteoglycan-fibrillar collagen interaction. Biochem. J 252, 313–323 (1988).
Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy asmineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–615 (2005).
Walsh, W. R. & Guzelsu, N. Ion concentration effects on bone streaming potentials and zeta potentials. Biomaterials 14, 331–336 (1993).
Wang, Y. et al. Water-mediated structuring of bone apatite. Nat. Mater. 12, 1144–1153 (2013).
Duer, M. J. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone. J. Magn. Reson. 253, 98–110 (2015).
Fullerton, G. D. & Amurao, M. R. Evidence that collagen and tendon have monolayer water coverage in the native state. Cell Biol. Int. 30, 56–65 (2006).
Stigter, D. Evaluation of the counterion condensation theory of polyelectrolytes. Biophys. J. 69, 380–388 (1995).
Israelachvili, J. N. Intermolecular and Surface Forces, 3rd edn (Academic Press, 2015).
Urbic, T. Ions increase strength of hydrogen bond in water. Chem. Phys. Lett. 610–611, 159–162 (2014).
Jiang, W., Griffanti, G., Tamimi, F., McKee, M. D. & Nazhat, S. N. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J. Struct. Biol. 212, 107592 (2020).
Li, Y. et al. Metabolic acids impact bone mineral maturation. Preprint at bioRxiv https://doi.org/10.1101/2022.09.21.508894 (2022).
Hu, Y.-Y., Rawal, A. & Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl Acad. Sci. USA 107, 22425–22429 (2010).
Abbasi-Rad, S. & Rad, H. S. Quantification of human cortical bone bound and free water in vivo with ultrashort echo tiome MR imaging: a model-based aproach. Radiology 283, 862–872 (2017).
Leakey, L. S. B. Olduvai Gorge 1951–61: Volume 1, A Preliminary Report on the Geology and Fauna (Cambridge Univ. Press, 1965).
Bromage, T. G. et al. Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat. Rec. 274B, 157–168 (2003).
Pang, S. et al. Comparison of different protocols for demineralization of cortical bone. Sci. Rep. 11, 7012 (2021).
Deng, J., Zhang, G. & Neubert, T. A. Metabolomic analysis of glioma cells using nanoflow liquid chromatography–tandem mass spectrometry. Methods Mol. Biol. 1741, 125–134 (2018).
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
Xu, Y. et al. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J. 40, e108428 (2021).
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
Sinitcyn, P. et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol. 39, 1563–1573 (2021).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Waskom, M. L. Seaborn: statistical data visualization. J. Open Source Softw. https://doi.org/10.21105/joss.03021 (2021).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

