Thursday, December 4, 2025
No menu items!
HomeNatureHomo sapiens-specific evolution unveiled by ancient southern African genomes

Homo sapiens-specific evolution unveiled by ancient southern African genomes

  • Nielsen, R. et al. Tracing the peopling of the world through genomics. Nature 541, 302–310 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hublin, J.-J. et al. New fossils from jebel irhoud, morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scerri, E. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582 – 594 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlebusch, C. et al. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358, 652–655 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergstrom, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature 590, 229–237 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ragsdale, A. P. et al. A weakly structured stem for human origins in Africa. Nature 620, 755–763 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Schlebusch, C. M. et al. Khoe-San genomes reveal unique variation and confirm the deepest population divergence in Homo sapiens. Mol. Biol. Evol. 37, 2944–2954 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998–1003 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tishkoff, S. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verdu, P. et al. Origins and genetic diversity of pygmy hunter-gatherers from western Central Africa. Curr. Biol. 19, 312–318 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gronau, I., Hubisz, M., Gulko, J., Danko, B. & Siepel, C. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1035 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlebusch, C. et al. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 338, 374–379 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, S. et al. Whole-genome sequencing reveals a complex African population demographic history and signatures of local adaptation. Cell 186, 923–939 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortes-Lima, C. A. et al. The genetic legacy of the expansion of Bantu-speaking peoples in Africa. Nature 625, 540–547 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Breton, G. et al. BaTwa populations from Zambia retain ancestry of past hunter-gatherer groups. Nat. Commun. 15, 7307 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breton, G. et al. Ancient tree-topologies and gene-flow processes among human lineages in Africa. Preprint at bioRxiv https://doi.org/10.1101/2024.07.15.603519 (2025).

  • Gretzinger, J. et al. 9,000 years of genetic continuity in southernmost Africa demonstrated at Oakhurst Rockshelter. Nat. Ecol. Evol. 8, 2121–2134 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llorente, M. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Skoglund, P. et al. Reconstructing prehistoric African population structure. Cell 171, 59–71 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipson, M. et al. Ancient DNA and deep population structure in sub-Saharan African foragers. Nature 603, 290–296 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipson, M. et al. Ancient West African foragers in the context of African population history. Nature 577, 665–670 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simões, L. G. et al. Northwest African neolithic initiated by migrants from Iberia and Levant. Nature 618, 550–556 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Loosdrecht, M. et al. Pleistocene North African genomes link near eastern and sub-Saharan African human populations. Science 360, 548–542 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lombard, M. et al. The southern African Stone Age sequence updated (II). S. Afr. Archaeol. Bull. 77, 172–212 (2022).


    Google Scholar
     

  • Schlebusch, C., Lombard, M. & Soodyall, H. mtDNA control region variation affirms diversity and deep sub-structure in populations from southern Africa. BMC Evol. Biol. 13, 56 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naidoo, T. et al. Y-chromosome variation in southern African Khoe-San populations based on whole-genome sequences. Genome Biol. Evol. 12, 1031–1039 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick, S. et al. The simons genome diversity project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prendergast, M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cousins, T., Scally, A. & Durbin, R. A structured coalescent model reveals deep ancestral structure shared by all modern humans. Nat. Genet. 57, 856–864 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rito, T. et al. A dispersal of Homo sapiens from southern to Eastern Africa immediately preceded the out-of-Africa migration. Sci. Rep. 9, 4728 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillipson, D. W African Archaeology (Cambridge Univ. Press, 1982).

  • Güldemann, T. A linguist’s view: Khoe-Kwadi speakers as the earliest food-producers of southern Africa. South. Afr. Humanit. 20, 93–132 (2008).


    Google Scholar
     

  • Dusseldorp, G., Lombard, M. & Wurz, S. Pleistocene Homo and the updated Stone Age sequence of South Africa. S. Afr. J. Sci. 109, 7 (2013).

    Article 

    Google Scholar
     

  • Grine, F. in Hofmeyr: A Late Pleistocene Human Skull from South Africa 71–118 (Springer, 2023).

  • Lahr, M. & Foley, R. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Yearb. Phys. Anthropol. 27, 137–176 (1998).

    Article 

    Google Scholar
     

  • Bruner, E. & Lombard, M. The skull from Florisbad: a paleoneurological report. J. Anthropol. Sci. 98, 89–97 (2020).


    Google Scholar
     

  • Grün, R. et al. Direct dating of Florisbad hominid. Nature 382, 500–501 (1996).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rightmire, G. The Lake Ndutu cranium and early Homo sapiens in Africa. Am. J. Phys. Anthropol. 61, 245–254 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammond, A. S., Royer, D. F. & Fleagle, J. G. The Omo-Kibish I pelvis. J. Hum. Evol. 108, 199–219 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Beaudet, A. et al. A reappraisal of the Border Cave 1 cranium (Kwazulu-Natal, South Africa). Quat. Sci. Rev. 282, 107452 (2022).

    Article 

    Google Scholar
     

  • Vidal, C. M. et al. Age of the oldest known Homo sapiens from Eastern Africa. Nature 601, 579–583 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadley, L. What stimulated rapid, cumulative innovation after 100,000 years ago? J. Archaeol. Method Theory 28, 120–141 (2021).

    Article 

    Google Scholar
     

  • Zilhao, J. The emergence of ornaments and art: an archaeological perspective on the origins of “behavioral modernity”. J. Archaeol. Res. 15, 1–54 (2007).

    Article 

    Google Scholar
     

  • Pinson, A. et al. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science 377, eabl6422 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeberg, H., Jakobsson, M. & Paabo, S. The genetic changes that shaped Neandertals, Denisovans, and modern humans. Cell 187, 1047–1058 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhlwilm, M. & Boeckx, C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci. Rep. 9, 8463 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lappalainen, T., Li, Y., Ramachandran, S. & Gusev, A. Genetic and molecular architecture of complex traits. Cell 187, 1059–1075 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adeyemo, A. A., Shriner, D., Bentley, A. R., Gbadegesin, R. A. & Rotimi, C. N. Evolutionary genetics and acclimatization in nephrology. Nat. Rev. Nephrol. 17, 827–839 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pontzer, H. et al. Evolution of water conservation in humans. Curr. Biol. 31, 1804–1810 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engelken, J. et al. Extreme population differences in the human zinc transporter ZIP4 (SLC39A4) are explained by positive selection in Sub-Saharan Africa. PLoS Genet. 10, e1004128 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogg, A. et al. SHCal13 Southern Hemisphere calibration, 0-50,000 years cal bp. Radiocarbon 55, 1889–1903 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hogg, A. et al. SHCal20 Southern Hemisphere calibration, 0-55,000 years cal bp. Radiocarbon 62, 759–778 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–543 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malmström, H. et al. More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA. Mol. Biol. Evol. 24, 998–1004 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Günther, T. et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl Acad. Sci. USA 112, 11917–11922 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briggs, A. & Heyn, P. in Ancient DNA 143–154 (Springer, 2012).

  • Kircher, M. in Ancient DNA 197–228 (Springer, 2012).

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skoglund, P. et al. Origins and genetic legacy of neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, R. E. et al. A complete neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Nat. Rev. Genet. 23, 553–559 (2013).

    CAS 

    Google Scholar
     

  • Jun, G. et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Oven, M. Phylotree build 17: growing the human mitochondrial DNA tree. Forensic Sci. Int. Genet. Suppl. Ser. 5, e392–e394 (2015).

    Article 

    Google Scholar
     

  • van Oven, M., Van Geystelen, A., Kayser, M., Decorte, R. & Larmuseau, M. Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome. Hum. Mutat. 35, 187–191 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, A. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patterson, N., Price, A. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, D., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skoglund, P. et al. Genetic evidence for two founding populations of the Americas. Nature 525, 104–108 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, J., Bernhardsson, C., Waxman, D., Jakobsson, M. & Sjödin, P. Investigating population continuity and ghost admixture among ancient genomes. Hum. Popul. Genet. Genom. 4, 0009 (2024).


    Google Scholar
     

  • Prüfer, K. snpAD: an ancient DNA genotype caller. Bioinformatics 34, 4165–4171 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, L. et al. VCF2Dis: an ultra-fast and efficient tool to calculate pairwise genetic distance and construct population phylogeny from VCF files. GigaScience 14, giaf032 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Sjödin, P., McKenna, J. & Jakobsson, M. Estimating divergence times from DNA sequences. Genetics 217, iyab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakobsson, M. et al. Data for ‘Homo-sapiens-specific evolution unveiled by ancient southern African genomes’. Zenodo https://doi.org/10.5281/zenodo.17295109 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments