Thursday, December 4, 2025
No menu items!
HomeNatureDated gene duplications elucidate the evolutionary assembly of eukaryotes

Dated gene duplications elucidate the evolutionary assembly of eukaryotes

  • Donoghue, P. C. J. et al. Defining eukaryotes to dissect eukaryogenesis. Curr. Biol. 33, R919–R929 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vosseberg, J. et al. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat. Ecol. Evol. 5, 92–100 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tria, F. D. K. et al. Gene duplications trace mitochondria to the onset of eukaryote complexity. Genome Biol. Evol. 13, evab055 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Carretero, S. et al. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602, 263–267 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • López-Garćia, P. & Moreira, D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem. Sci. 24, 88–93 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • López-García, P. & Moreira, D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A. & Katsev, S. Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry. Nat. Geosci. 12, 375–380 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Strong evidence for a weakly oxygenated ocean-atmosphere system during the Proterozoic. Proc. Natl. Acad Sci. USA 119, e2116101119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The physiology of phagocytosis in the context of mitochondrial origin. Microbiol. Mol. Biol. Rev. 81, e00008–e00017 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vosseberg, J. et al. The emerging view on the origin and early evolution of eukaryotic cells. Nature 633, 295–305 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koonin, E. V. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?. Philos. Trans. R. Soc. B 370, 20140333 (2015).

    Article 

    Google Scholar
     

  • Vosseberg, J. & Snel, B. Domestication of self-splicing introns during eukaryogenesis: the rise of the complex spliceosomal machinery. Biol. Direct 12, 30 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues-Oliveira, T. et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 613, 332–339 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schrago, C. G., Mello, B. & Soares, A. E. R. Combining fossil and molecular data to date the diversification of New World Primates. J. Evol. Biol. 26, 2438–2446 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat Ecol Evol 6, 253–262 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Moody, E. R. R. et al. The nature of the last universal common ancestor and its impact on the early Earth system. Nat. Ecol. Evol. 8, 1654–1666 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tria, F. D. K. & Martin, W. F. Gene duplications are at least 50 times less frequent than gene transfers in prokaryotic genomes. Genome Biol. Evol. 13, evab224 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stairs, C. W. & Ettema, T. J. G. The archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr. Biol. 30, R521–R526 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollard, T. D. & Goldman, R. D. Overview of the cytoskeleton from an evolutionary perspective. Cold Spring Harb. Perspect. Biol. 10, a030288 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Capalbo, L. et al. Coordinated regulation of the ESCRT-III component CHMP4C by the chromosomal passenger complex and centralspindlin during cytokinesis. Open Biol. 6, 160248 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petsalaki, E., Dandoulaki, M. & Zachos, G. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J. Cell Biol. 217, 861–876 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baum, D. A. & Baum, B. An inside-out origin for the eukaryotic cell. BMC Biol. 12, 76 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dacks, J. B., Peden, A. A. & Field, M. C. Evolution of specificity in the eukaryotic endomembrane system. Int. J. Biochem. Cell Biol. 41, 330–340 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Bernabeu, M., Manzano-Morales, S., Marcet-Houben, M. & Gabaldón, T. Diverse ancestries reveal complex symbiotic interactions during eukaryogenesis. Preprint at bioRxiv https://doi.org/10.1101/2024.10.14.618062 (2024).

  • Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Melnikov, S. et al. Archaeal ribosomal proteins possess nuclear localization signal-type motifs: implications for the origin of the cell nucleus. Mol. Biol. Evol. 37, 124–133 (2020).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Pearson, S. A. & Cowan, J. A. Evolution of the human mitochondrial ABCB7 [2Fe–2S](GS)4 cluster exporter and the molecular mechanism of an E433K disease-causing mutation. Arch. Biochem. Biophys. 697, 108661 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cotton, J. A. & McInerney, J. O. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc. Natl Acad. Sci. USA 107, 17252–17255 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craig, J. M., Kumar, S. & Hedges, S. B. The origin of eukaryotes and rise in complexity were synchronous with the rise in oxygen. Front. Bioinformatics 3, 1233281 (2023).

    Article 

    Google Scholar
     

  • Mahendrarajah, T. A. et al. ATP synthase evolution on a cross-braced dated tree of life. Nat. Commun. 14, 7456 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parfrey, L. W. et al. Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst. Biol. 59, 518–533 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chernikova, D., Motamedi, S., Csürös, M., Koonin, E. V. & Rogozin, I. B. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biol. Direct 6, 26 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berney, C. & Pawlowski, J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. Biol. Sci. 273, 1867–1872 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dacks, J. B. et al. The changing view of eukaryogenesis—fossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695–3703 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Brocks, J. J. & Summons, R. E. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 63–115 (Elsevier, 2003).

  • French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brocks, J. J. et al. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Javaux, E. J., Marshall, C. P. & Bekker, A. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463, 934–938 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Javaux, E. J. A diverse Palaeoproterozoic microbial ecosystem implies early eukaryogenesis. Philos. Trans. R. Soc. B 380, 20240092 (2025).

    Article 

    Google Scholar
     

  • Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Agić, H., Moczydłowska, M. & Yin, L. Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton—a window into the early eukaryote evolution. Precambrian Res. 297, 101–130 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Miao, L., Moczydłowska, M., Zhu, S. & Zhu, M. New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Res. 321, 172–198 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Miao, L., Yin, Z., Li, G. & Zhu, M. First report of Tappania and associated microfossils from the late Paleoproterozoic Chuanlinggou Formation of the Yanliao Basin, North China. Precambrian Res. 400, 107268 (2024).

    Article 

    Google Scholar
     

  • Peng, Y., Bao, H. & Yuan, X. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res. 168, 223–232 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Lamb, D. M., Awramik, S. M., Chapman, D. J. & Zhu, S. Evidence for eukaryotic diversification in the 1800 million-year-old Changzhougou Formation, North China. Precambrian Res. 173, 93–104 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Miao, L., Yin, Z., Knoll, A. H., Qu, Y. & Zhu, M. 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China. Sci. Adv. 10, eadk3208 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, D., Luo, G., Tang, Q., She, Z. & Xiao, S. New record of the green algal fossil Proterocladus and coexisting microfossils from the Meso-Neoproterozoic Diaoyutai Formation in southern Liaoning, North China. Precambrian Res. 393, 107104 (2023).

    Article 

    Google Scholar
     

  • Bowles, A. M. C., Williamson, C. J., Williams, T. A., Lenton, T. M. & Donoghue, P. C. J. The origin and early evolution of plants. Trends Plant Sci. 28, 312–329 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Strother, P. K. et al. A possible billion-year-old holozoan with differentiated multicellularity. Curr. Biol. 31, 2658–2665.e2 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Porter, S. M. & Riedman, L. A. Frameworks for Interpreting the Early Fossil Record of Eukaryotes. Annu. Rev. Microbiol. 77, 173–191 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Avcı, B. et al. Spatial separation of ribosomes and DNA in Asgard archaeal cells. ISME J. 16, 606–610 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Field, M. C & Rout, M. P Pore timing: the evolutionary origins of the nucleus and nuclear pore complex. F1000Research 8, 369 (2019).

    Article 

    Google Scholar
     

  • Martin, W. & Koonin, E. V. Introns and the origin of nucleus-cytosol compartmentalization. Nature 440, 41–45 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Forterre, P. & Gaïa, M. Giant viruses and the origin of modern eukaryotes. Curr. Opin. Microbiol. 31, 44–49 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schavemaker, P. E. & Muñoz-Gómez, S. A. The role of mitochondrial energetics in the origin and diversification of eukaryotes. Nat. Ecol. Evol. 6, 1307–1317 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harbor Persp. Biol. 6, a016139–a016139 (2014).

  • Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

  • Shih, P. M. & Matzke, N. J. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc. Natl Acad. Sci. USA 110, 12355–12360 (2013).

  • Bianchini, G. & Sánchez-Baracaldo, P. TreeViewer version 2.1.0. Zenodo https://doi.org/10.5281/zenodo.7768344 (2023).

  • Richter, D. J et al. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Commun. J. 2, e56 (2022).

    Article 

    Google Scholar
     

  • Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas, P. D. et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • dos Reis, M. & Yang, Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Jeffares, D. C., Tomiczek, B., Sojo, V. & dos Reis, M. A beginners guide to estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in a genome. Methods Mol. Biol. 1201, 65–90 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gouveia-Oliveira, R., Sackett, P. W. & Pedersen, A. G. MaxAlign: maximizing usable data in an alignment. BMC Bioinformatics 8, 312 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wheeler, D. L. et al. Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res. 32, D35–D40 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments