Thursday, November 27, 2025
No menu items!
HomeNatureProgressive coevolution of the yeast centromere and kinetochore

Progressive coevolution of the yeast centromere and kinetochore

  • Hooff, J. J., Tromer, E., Wijk, L. M., Snel, B. & Kops, G. J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 18, 1559–1571 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tromer, E. C., Van Hooff, J. J. E., Kops, G. J. P. L. & Snel, B. Mosaic origin of the eukaryotic kinetochore. Proc. Natl Acad. Sci. USA 116, 12873–12882 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bensasson, D., Zarowiecki, M., Burt, A. & Koufopanou, V. Rapid evolution of yeast centromeres in the absence of drive. Genetics 178, 2161–2167 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guin, K., Sreekumar, L. & Sanyal, K. Implications of the evolutionary trajectory of centromeres in the fungal kingdom. Annu. Rev. Microbiol. 74, 835–853 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K. & Willard, H. F. Genomic and genetic definition of a functional human centromere. Science 294, 109–115 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wlodzimierz, P. et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 618, 557–565 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordon, J. L., Byrne, K. P. & Wolfe, K. H. Mechanisms of chromosome number evolution in yeast. PLoS Genet. 7, e1002190 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haase, M. A. B. et al. Ancient co-option of LTR retrotransposons as yeast centromeres. Preprint at bioRxiv https://doi.org/10.1101/2025.04.25.647736 (2025).

  • Hession, C., Byrne, K. P., Wolfe, K. H. & Butler, G. Centromeres in budding yeasts are conserved in chromosomal location but not in structure. Preprint at bioRxiv https://doi.org/10.1101/2025.07.24.666568 (2025).

  • Navarro-Mendoza, M. I. et al. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 29, 3791–3802 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibeaux, R. et al. Electron tomography of the microtubule cytoskeleton in multinucleated hyphae of Ashbya gossypii. J. Cell Sci. 125, 5830–5839 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrero, D. J. et al. Centromeres in the thermotolerant yeast K. marxianus mediate attachment to a single microtubule. Chromosome Res. 33, 14 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, X.-X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saunders, M., Fitzgerald-Hayes, M. & Bloom, K. Chromatin structure of altered yeast centromeres. Proc. Natl Acad. Sci. USA 85, 175–179 (1988).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meraldi, P., McAinsh, A., Rheinbay, E. & Sorger, P. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R23 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helsen, J. & Ramachandran, K. PCAn v1.0. Zenodo https://doi.org/10.5281/zenodo.17293587 (2025).

  • Xiao, H. et al. Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres. Genes Dev. 31, 1958–1972 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, P. D., Wei, H., Tan, D. & Harrison, S. C. Structure of the centromere binding factor 3 complex from Kluyveromyces lactis. J. Mol. Biol. 431, 4444–4454 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szánthó, L. L. et al. A timetree of fungi dated with fossils and horizontal gene transfers. Nat. Ecol. Evol. 9, 1989–2001 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, N. B. et al. Stalled replication forks generate a distinct mutational signature in yeast. Proc. Natl Acad. Sci. USA 114, 9665–9670 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenfeder, S. A. & Newlon, C. S. Replication forks pause at yeast centromeres. Mol. Cell. Biol. 12, 4056–4066 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dendooven, T. et al. Cryo-EM structure of the complete inner kinetochore of the budding yeast point centromere. Sci. Adv. 9, eadg7480 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellor, J. et al. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 9, 4017–4026 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elphinstone, C., Elphinstone, R., Todesco, M. & Rieseberg, L. RepeatOBserver: tandem repeat visualization and putative centromere detection. Mol. Ecol. Resour. 25, e14084 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, D. et al. CentIER: accurate centromere identification for plant genomes. Plant Commun. 5, 101046 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastrorosa, F. K. et al. Identification and annotation of centromeric hypomethylated regions with CDR-Finder. Bioinformatics 40, btae733 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, S. et al. HiCAT: a tool for automatic annotation of centromere structure. Genome Biol. 24, 58 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arora, U. P. & Dumont, B. L. Molecular evolution of the mammalian kinetochore complex. Preprint at bioRxiv https://doi.org/10.1101/2024.06.27.600994 (2024).

  • Malik, H. S. & Henikoff, S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157, 1293–1298 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermaak, D., Hayden, H. S. & Henikoff, S. Centromere targeting element within the histone fold domain of Cid. Mol. Cell. Biol. 22, 7553–7561 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, R. E. & Rogers, K. Phylogenetic analysis of fungal centromere H3 proteins. Genetics 174, 1481–1492 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravi, M. et al. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186, 461–471 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kipling, D. & Warburton, P. E. Centromeres, CENP-B and Tigger too. Trends Genet. 13, 141–145 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gamba, R. & Fachinetti, D. From evolution to function: two sides of the same CENP-B coin? Exp. Cell Res. 390, 111959 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sankaranarayanan, S. R. et al. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 9, e53944 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda, Y. et al. Chromosome-scale genome assembly of the marine oleaginous diatom Fistulifera solaris. Mar. Biotechnol. 2, 788–800 (2022).

    Article 

    Google Scholar
     

  • Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bravo Núñez, M. A., Sabbarini, I. M., Eide, L. E., Unckless, R. L. & Zanders, S. E. Atypical meiosis can be adaptive in outcrossed Schizosaccharomyces pombe due to wtf meiotic drivers. eLife 9, e57936 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cieśliński, K. & Ries, J. The yeast kinetochore — structural insights from optical microscopy. Curr. Opin. Chem. Biol. 20, 1–8 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kobayashi, N. et al. Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres. Curr. Biol. 25, 2026–2033 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pontes, A., Hutzler, M., Brito, P. H. & Sampaio, J. P. Revisiting the taxonomic synonyms and populations of Saccharomyces cerevisiae—phylogeny, phenotypes, ecology and domestication. Microorganisms 8, 903 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peter, J. et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida, P. et al. A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol. Ecol. 24, 5412–5427 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • de Almeida, E. L. M. et al. Genome assembly and variant analysis of two Saccharomyces cerevisiae strains isolated from stingless bee pollen. Gene 927, 148722 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Preiss, R. et al. European farmhouse brewing yeasts form a distinct genetic group. Appl. Microbiol. Biotechnol. 108, 430 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, H. Y. I. Chokyotager/ORFFinder. GitHub https://github.com/Chokyotager/ORFFinder (2021).

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Opulente, D. A. et al. Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts. Science 384, eadj4503 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 — approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemoine, F. & Gascuel, O. Gotree/Goalign: toolkit and Go API to facilitate the development of phylogenetic workflows. NAR Genom. Bioinform. 3, lqab075 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl Acad. Sci. USA 109, 19333–19338 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hays, M., Young, J. M., Levan, P. F. & Malik, H. S. A natural variant of the essential host gene MMS21 restricts the parasitic 2-micron plasmid in Saccharomyces cerevisiae. eLife 9, e62337 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liachko, I. & Dunham, M. J. An autonomously replicating sequence for use in a wide range of budding yeasts. FEMS Yeast Res. 14, 364–367 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helsen, J., Ramachandran, K., Sherlock, G. & Dey, G. Progressive coevolution of the yeast centromere and kinetochore. Figshare https://doi.org/10.6084/m9.figshare.c.7630151 (2025).

  • Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parker, J. et al. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502, 228–231 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cicconardi, F., Marcatili, P., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol. Phylogenet. Evol. 112, 230–243 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosakovsky Pond, S. L., Wisotsky, S. R., Escalante, A., Magalis, B. R. & Weaver, S. Contrast-FEL—a test for differences in selective pressures at individual sites among clades and sets of branches. Mol. Biol. Evol. 38, 1184–1198 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcet-Houben, M., Księżopolska, E. & Gabaldón, T. Chromosome level assemblies of Nakaseomyces (Candida) bracarensis uncover two distinct clades and define its adhesin repertoire. BMC Genomics 25, 1053 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belloch, C., Barrio, E., García, M. D. & Querol, A. Inter- and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast 14, 1341–1354 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments