Thursday, November 27, 2025
No menu items!
HomeNatureDetection of triboelectric discharges during dust events on Mars

Detection of triboelectric discharges during dust events on Mars

  • Aplin, K. L. & Fischer, G. Lightning detection in planetary atmospheres. Weather 72, 46–50 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Eden, H. F. & Vonnegut, B. Electrical breakdown caused by dust motion in low-pressure atmospheres: considerations for Mars. Science 180, 962–963 (1973).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, A. A. Dust clouds and frictional generation of glow discharges on Mars. Nature 268, 614–614 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kahre, M. A. in The Atmosphere and Climate of Mars (eds Haberle, R. M. et al.) 295–337 (Cambridge Univ. Press, 2017).

  • Stow, C. D. Dust and sand storm electrification. Weather 24, 134–140 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Farrell, W. M. et al. Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J. Geophys. Res. Planets 109, E03004 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, D. S., Schmidt, R. A. & Dent, J. D. Electrostatic force on saltating sand. J. Geophys. Res. Atmos. 103, 8997–9001 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Melnik, O. & Parrot, M. Electrostatic discharge in Martian dust storms. J. Geophys. Res. Space Phys. 103, 29107–29117 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Farrell, W. M., Delory, G. T., Cummer, S. A. & Marshall, J. R. A simple electrodynamic model of a dust devil. Geophys. Res. Lett. 30, 2050 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Krauss, C. E., Horanyi, M. & Robertson, S. Modeling the formation of electrostatic discharges on Mars. J. Geophys. Res. Planets 111, E02001 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Mimoun, D. et al. The Mars microphone onboard SuperCam. Space Sci. Rev. 219, 5 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Maurice, S. et al. In situ recording of Mars soundscape. Nature 605, 653–658 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renno, N. O. & Kok, J. F. Electrical activity and dust lifting on Earth, Mars, and beyond. Space Sci. Rev. 137, 419–434 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Esposito, F. et al. The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43, 5501–5508 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Atreya, S. K. et al. Oxidant enhancement in martian dust devils and storms: implications for life and habitability. Astrobiology 6, 439–450 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Delory, G. T. et al. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology 6, 451–462 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Renno, N. O. et al. MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. Planets 109, E07001 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Riousset, J. A., Nag, A. & Palotai, C. Scaling of conventional breakdown threshold: impact for predictions of lightning and TLEs on Earth, Venus, and Mars. Icarus 338, 113506 (2020).

    Article 

    Google Scholar
     

  • Cimarelli, C. & Genareau, K. A review of volcanic electrification of the atmosphere and volcanic lightning. J. Volcanol. Geotherm. Res. 422, 107449 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tkachenko, T. & Jacobi, H.-W. Electrical charging of snow and ice in polar regions and the potential impact on atmospheric chemistry. Environ. Sci. Atmos. 4, 144–163 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Segura, A. & Navarro-González, R. Nitrogen fixation on early Mars by volcanic lightning and other sources. Geophys. Res. Lett. 32, L05203 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Harrison, R. G. et al. Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity. Space Sci. Rev. 203, 299–345 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Farrell, W. M. et al. Is the electron avalanche process in a martian dust devil self-quenching? Icarus 254, 333–337 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harper, J. M., Dufek, J. & McDonald, G. D. Detection of spark discharges in an agitated Mars dust simulant isolated from foreign surfaces. Icarus 357, 114268 (2021).

    Article 

    Google Scholar
     

  • Ruf, C. et al. Emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett. 36, L13202 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Gurnett, D. A. et al. Non-detection of impulsive radio signals from lightning in Martian dust storms using the radar receiver on the Mars Express spacecraft. Geophys. Res. Lett. 37, L17802 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ferguson, D. C., Kolecki, J. C., Siebert, M. W., Wilt, D. M. & Matijevic, J. R. Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover. J. Geophys. Res. Planets 104, 8747–8759 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Chide, B. et al. An acoustic investigation of the near-surface turbulence on Mars. J. Acoust. Soc. Am. 155, 420–435 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murdoch, N. et al. The sound of a Martian dust devil. Nat. Commun. 13, 7505 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stott, A. E. et al. Wind and turbulence observations with the Mars microphone on Perseverance. J Geophys. Res. Planets 128, e2022JE007547 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wright, W. M. Propagation in air of N waves produced by sparks. J. Acoust. Soc. Am. 73, 1948–1955 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Fotis, G. Electromagnetic fields radiated by electrostatic discharges: a review of the available approaches. Electronics 12, 2577 (2023).

    Article 

    Google Scholar
     

  • Jones, D. L. Intermediate strength blast wave. Phys. Fluids 11, 1664–1667 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Q. & Zhang, Y. Shock wave generated by high-energy electric spark discharge. J. Appl. Phys. 116, 153302 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gillier, M. et al. Acoustic propagation in the near-surface Martian atmosphere. J. Geophys. Res. Planets 129, e2024JE008469 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez-Manfredi, J. A. et al. The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Sci. Rev. 217, 48 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hueso, R. et al. Convective vortices and dust devils detected and characterized by Mars 2020. J. Geophys. Res. Planets 128, e2022JE007516 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Franzese, G. et al. Electric properties of dust devils. Earth Planet. Sci. Lett. 493, 71–81 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lemmon, M. T. et al. Dust, sand, and winds within an active Martian storm in Jezero crater. Geophys. Res. Lett. 49, e2022GL100126 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ordóñez-Etxeberria, I., Hueso, R. & Sánchez-Lavega, A. Strong increase in dust devil activity at Gale crater on the third year of the MSL mission and suppression during the 2018 Global Dust Storm. Icarus 347, 113814 (2020).

    Article 

    Google Scholar
     

  • Lefevre, F. & Forget, F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Greeley, R. et al. Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. Planets 111, E12S09 (2006).

    ADS 

    Google Scholar
     

  • Lorenz, R. D. et al. The whirlwinds of Elysium: a catalog and meteorological characteristics of “dust devil” vortices observed by InSight on Mars. Icarus 355, 114119 (2021).

    Article 

    Google Scholar
     

  • Battalio, M. & Wang, H. The Mars Dust Activity Database (MDAD): a comprehensive statistical study of dust storm sequences. Icarus 354, 114059 (2021).

    Article 

    Google Scholar
     

  • Bertrand, T. et al. Impact of the coagulation of dust particles on Mars during the 2018 global dust storm. Icarus 388, 115239 (2022).

    Article 

    Google Scholar
     

  • Wang, A., et al. Amorphization of S, Cl-salts induced by Martian dust activities. J. Geophys. Res. Planets 125, e2020JE006701 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, A. et al. Chlorine release from common chlorides by Martian dust activity. J. Geophys. Res. Planets 125, e2019JE006283 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Korablev, O. et al. Transient HCl in the atmosphere of Mars. Sci. Adv. 7, eabe4386 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, A. et al. Quantification of carbonates, oxychlorines, and chlorine generated by heterogeneous electrochemistry induced by Martian dust activity. Geophys. Res. Lett. 50, e2022GL102127 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marov, M. Y. & Huntress, W. T. Soviet Robots in the Solar System. Mission Technologies and Discoveries (Springer, 2011).

  • Berthelier, J. J., Grard, R., Laakso, H. & Parrot, M. ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER. Planet. Space Sci. 48, 1193–1200 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Maurice, S. et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 217, 47 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wiens, R. C. et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 217, 1–87 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chide, B. et al. Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochim. Acta B At. Spectrosc. 153, 50–60 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chide, B. et al. Acoustics reveals short-term air temperature fluctuations near Mars’ surface. Geophys. Res. Lett. 49, e2022GL100333 (2022).

    Article 
    ADS 

    Google Scholar
     

  • de Conti, A. & Visacro, S. Analytical representation of single- and double-peaked lightning current waveforms. IEEE Tran. Electromagn. Compat. 49, 448–451 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Sánchez-Lavega, A. et al. Mars 2020 Perseverance rover studies of the Martian atmosphere over Jezero from pressure measurements. J. Geophys. Res. Planets 128, e2022JE007480 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Overpressure profile of LIBS blast on Mars. LPI Contribution No. 3040, id.1309 (2024).

  • Chide, B. et al. Measurements of sound propagation in Mars’ lower atmosphere. Earth Planet. Sci. Lett. 615, 118200 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Loeb, A. et al. Point explosion simulation by fast spark discharges. J. Appl. Phys. 57, 2501–2506 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Bo, T. L., Zhang, H. & Zheng, X. J. Charge-to-mass ratio of saltating particles in wind-blown sand. Sci. Rep. 4, 5590 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Renzo, M. & Urzay, J. Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun. 9, 1676 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorenz, R. D. Triboelectric charging and brownout hazard evaluation for a planetary rotorcraft. In AIAA Aviation 2020 Forum https://doi.org/10.2514/6.2020-2837 (American Institute of Aeronautics and Astronautics, 2020).

  • von Pidoll, U. Electrostatic charging of vehicles being driven and stopped. J. Electrostat. 92, 14–23 (2018).

    Article 

    Google Scholar
     

  • Cardnell, S. et al. A photochemical model of the dust-loaded ionosphere of Mars. J. Geophys. Res. Planets 121, 2335–2348 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lorenz, R. D. & Clarke, E. S. Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment. Planet. Space Sci. 193, 105075 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W. et al. Charging assessment for sample tube exchange between Perseverance and MSR SRL. In Proc. 2024 IEEE Aerospace Conference (IEEE, 2024).

  • Zent, A. P. et al. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res. Planets 115, E00E14 (2010).

    Article 

    Google Scholar
     

  • Toledo, D. et al. Dust devil frequency of occurrence and radiative effects at Jezero crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). J. Geophys. Res. Planets 128, e2022JE007494 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Guzewich, S. D., Toigo, A. D. & Wang, H. An investigation of dust storms observed with the Mars Color Imager. Icarus 289, 199–213 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rakov, V. A., & Uman, M. A. in Lightning. Physics and Effects 507–527 (Cambridge Univ. Press, 2003).

  • Robledo-Martinez, A., Sobral, H. & Ruiz-Meza, A. Electrical discharges as a possible source of methane on Mars: lab simulation. Geophys. Res. Lett. 39, L17202 (2012).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments