Aplin, K. L. & Fischer, G. Lightning detection in planetary atmospheres. Weather 72, 46–50 (2017).
Eden, H. F. & Vonnegut, B. Electrical breakdown caused by dust motion in low-pressure atmospheres: considerations for Mars. Science 180, 962–963 (1973).
Mills, A. A. Dust clouds and frictional generation of glow discharges on Mars. Nature 268, 614–614 (1977).
Kahre, M. A. in The Atmosphere and Climate of Mars (eds Haberle, R. M. et al.) 295–337 (Cambridge Univ. Press, 2017).
Stow, C. D. Dust and sand storm electrification. Weather 24, 134–140 (1969).
Farrell, W. M. et al. Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J. Geophys. Res. Planets 109, E03004 (2004).
Schmidt, D. S., Schmidt, R. A. & Dent, J. D. Electrostatic force on saltating sand. J. Geophys. Res. Atmos. 103, 8997–9001 (1998).
Melnik, O. & Parrot, M. Electrostatic discharge in Martian dust storms. J. Geophys. Res. Space Phys. 103, 29107–29117 (1998).
Farrell, W. M., Delory, G. T., Cummer, S. A. & Marshall, J. R. A simple electrodynamic model of a dust devil. Geophys. Res. Lett. 30, 2050 (2003).
Krauss, C. E., Horanyi, M. & Robertson, S. Modeling the formation of electrostatic discharges on Mars. J. Geophys. Res. Planets 111, E02001 (2006).
Mimoun, D. et al. The Mars microphone onboard SuperCam. Space Sci. Rev. 219, 5 (2023).
Maurice, S. et al. In situ recording of Mars soundscape. Nature 605, 653–658 (2022).
Renno, N. O. & Kok, J. F. Electrical activity and dust lifting on Earth, Mars, and beyond. Space Sci. Rev. 137, 419–434 (2008).
Esposito, F. et al. The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43, 5501–5508 (2016).
Atreya, S. K. et al. Oxidant enhancement in martian dust devils and storms: implications for life and habitability. Astrobiology 6, 439–450 (2006).
Delory, G. T. et al. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology 6, 451–462 (2006).
Renno, N. O. et al. MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. Planets 109, E07001 (2004).
Riousset, J. A., Nag, A. & Palotai, C. Scaling of conventional breakdown threshold: impact for predictions of lightning and TLEs on Earth, Venus, and Mars. Icarus 338, 113506 (2020).
Cimarelli, C. & Genareau, K. A review of volcanic electrification of the atmosphere and volcanic lightning. J. Volcanol. Geotherm. Res. 422, 107449 (2022).
Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).
Tkachenko, T. & Jacobi, H.-W. Electrical charging of snow and ice in polar regions and the potential impact on atmospheric chemistry. Environ. Sci. Atmos. 4, 144–163 (2024).
Segura, A. & Navarro-González, R. Nitrogen fixation on early Mars by volcanic lightning and other sources. Geophys. Res. Lett. 32, L05203 (2005).
Harrison, R. G. et al. Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity. Space Sci. Rev. 203, 299–345 (2016).
Farrell, W. M. et al. Is the electron avalanche process in a martian dust devil self-quenching? Icarus 254, 333–337 (2015).
Harper, J. M., Dufek, J. & McDonald, G. D. Detection of spark discharges in an agitated Mars dust simulant isolated from foreign surfaces. Icarus 357, 114268 (2021).
Ruf, C. et al. Emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett. 36, L13202 (2009).
Gurnett, D. A. et al. Non-detection of impulsive radio signals from lightning in Martian dust storms using the radar receiver on the Mars Express spacecraft. Geophys. Res. Lett. 37, L17802 (2010).
Ferguson, D. C., Kolecki, J. C., Siebert, M. W., Wilt, D. M. & Matijevic, J. R. Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover. J. Geophys. Res. Planets 104, 8747–8759 (1999).
Chide, B. et al. An acoustic investigation of the near-surface turbulence on Mars. J. Acoust. Soc. Am. 155, 420–435 (2024).
Murdoch, N. et al. The sound of a Martian dust devil. Nat. Commun. 13, 7505 (2022).
Stott, A. E. et al. Wind and turbulence observations with the Mars microphone on Perseverance. J Geophys. Res. Planets 128, e2022JE007547 (2023).
Wright, W. M. Propagation in air of N waves produced by sparks. J. Acoust. Soc. Am. 73, 1948–1955 (1983).
Fotis, G. Electromagnetic fields radiated by electrostatic discharges: a review of the available approaches. Electronics 12, 2577 (2023).
Jones, D. L. Intermediate strength blast wave. Phys. Fluids 11, 1664–1667 (1968).
Liu, Q. & Zhang, Y. Shock wave generated by high-energy electric spark discharge. J. Appl. Phys. 116, 153302 (2014).
Gillier, M. et al. Acoustic propagation in the near-surface Martian atmosphere. J. Geophys. Res. Planets 129, e2024JE008469 (2024).
Rodriguez-Manfredi, J. A. et al. The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Sci. Rev. 217, 48 (2021).
Hueso, R. et al. Convective vortices and dust devils detected and characterized by Mars 2020. J. Geophys. Res. Planets 128, e2022JE007516 (2023).
Franzese, G. et al. Electric properties of dust devils. Earth Planet. Sci. Lett. 493, 71–81 (2018).
Lemmon, M. T. et al. Dust, sand, and winds within an active Martian storm in Jezero crater. Geophys. Res. Lett. 49, e2022GL100126 (2022).
Ordóñez-Etxeberria, I., Hueso, R. & Sánchez-Lavega, A. Strong increase in dust devil activity at Gale crater on the third year of the MSL mission and suppression during the 2018 Global Dust Storm. Icarus 347, 113814 (2020).
Lefevre, F. & Forget, F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2009).
Greeley, R. et al. Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. Planets 111, E12S09 (2006).
Lorenz, R. D. et al. The whirlwinds of Elysium: a catalog and meteorological characteristics of “dust devil” vortices observed by InSight on Mars. Icarus 355, 114119 (2021).
Battalio, M. & Wang, H. The Mars Dust Activity Database (MDAD): a comprehensive statistical study of dust storm sequences. Icarus 354, 114059 (2021).
Bertrand, T. et al. Impact of the coagulation of dust particles on Mars during the 2018 global dust storm. Icarus 388, 115239 (2022).
Wang, A., et al. Amorphization of S, Cl-salts induced by Martian dust activities. J. Geophys. Res. Planets 125, e2020JE006701 (2020).
Wang, A. et al. Chlorine release from common chlorides by Martian dust activity. J. Geophys. Res. Planets 125, e2019JE006283 (2020).
Korablev, O. et al. Transient HCl in the atmosphere of Mars. Sci. Adv. 7, eabe4386 (2021).
Wang, A. et al. Quantification of carbonates, oxychlorines, and chlorine generated by heterogeneous electrochemistry induced by Martian dust activity. Geophys. Res. Lett. 50, e2022GL102127 (2023).
Marov, M. Y. & Huntress, W. T. Soviet Robots in the Solar System. Mission Technologies and Discoveries (Springer, 2011).
Berthelier, J. J., Grard, R., Laakso, H. & Parrot, M. ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER. Planet. Space Sci. 48, 1193–1200 (2000).
Maurice, S. et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 217, 47 (2021).
Wiens, R. C. et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 217, 1–87 (2021).
Chide, B. et al. Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochim. Acta B At. Spectrosc. 153, 50–60 (2019).
Chide, B. et al. Acoustics reveals short-term air temperature fluctuations near Mars’ surface. Geophys. Res. Lett. 49, e2022GL100333 (2022).
de Conti, A. & Visacro, S. Analytical representation of single- and double-peaked lightning current waveforms. IEEE Tran. Electromagn. Compat. 49, 448–451 (2007).
Sánchez-Lavega, A. et al. Mars 2020 Perseverance rover studies of the Martian atmosphere over Jezero from pressure measurements. J. Geophys. Res. Planets 128, e2022JE007480 (2023).
Chen, Z. et al. Overpressure profile of LIBS blast on Mars. LPI Contribution No. 3040, id.1309 (2024).
Chide, B. et al. Measurements of sound propagation in Mars’ lower atmosphere. Earth Planet. Sci. Lett. 615, 118200 (2023).
Loeb, A. et al. Point explosion simulation by fast spark discharges. J. Appl. Phys. 57, 2501–2506 (1985).
Bo, T. L., Zhang, H. & Zheng, X. J. Charge-to-mass ratio of saltating particles in wind-blown sand. Sci. Rep. 4, 5590 (2014).
Di Renzo, M. & Urzay, J. Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun. 9, 1676 (2018).
Lorenz, R. D. Triboelectric charging and brownout hazard evaluation for a planetary rotorcraft. In AIAA Aviation 2020 Forum https://doi.org/10.2514/6.2020-2837 (American Institute of Aeronautics and Astronautics, 2020).
von Pidoll, U. Electrostatic charging of vehicles being driven and stopped. J. Electrostat. 92, 14–23 (2018).
Cardnell, S. et al. A photochemical model of the dust-loaded ionosphere of Mars. J. Geophys. Res. Planets 121, 2335–2348 (2016).
Lorenz, R. D. & Clarke, E. S. Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment. Planet. Space Sci. 193, 105075 (2020).
Kim, W. et al. Charging assessment for sample tube exchange between Perseverance and MSR SRL. In Proc. 2024 IEEE Aerospace Conference (IEEE, 2024).
Zent, A. P. et al. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res. Planets 115, E00E14 (2010).
Toledo, D. et al. Dust devil frequency of occurrence and radiative effects at Jezero crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). J. Geophys. Res. Planets 128, e2022JE007494 (2023).
Guzewich, S. D., Toigo, A. D. & Wang, H. An investigation of dust storms observed with the Mars Color Imager. Icarus 289, 199–213 (2017).
Rakov, V. A., & Uman, M. A. in Lightning. Physics and Effects 507–527 (Cambridge Univ. Press, 2003).
Robledo-Martinez, A., Sobral, H. & Ruiz-Meza, A. Electrical discharges as a possible source of methane on Mars: lab simulation. Geophys. Res. Lett. 39, L17202 (2012).

