Thursday, November 20, 2025
No menu items!
HomeNatureRepulsions instruct synaptic partner matching in an olfactory circuit

Repulsions instruct synaptic partner matching in an olfactory circuit

  • Hong, W. & Luo, L. Genetic control of wiring specificity in the fly olfactory system. Genetics 196, 17–29 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 536–556 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, Q. et al. Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. eLife 10, e63450 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLaughlin, C. N. et al. Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. eLife 10, e63856 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jan, Y. N. & Jan, L. Y. Branching out: mechanisms of dendritic arborization. Nat. Rev. Neurosci. 11, 316–328 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yogev, S. & Shen, K. Cellular and molecular mechanisms of synaptic specificity. Annu. Rev. Cell Dev. Biol. 30, 417–437 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Südhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu, C. et al. Dimensionality reduction simplifies synaptic partner matching in an olfactory circuit. Science 388, 538–544 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kolodkin, A. L. & Tessier-Lavigne, M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol. 3, a001727 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, J., Henke-Fahle, S. & Bonhoeffer, F. Avoidance of posterior tectal membranes by temporal retinal axons. Development 101, 909–913 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Pederick, D. T. et al. Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks. Science 372, 1068–1073 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, W., Mosca, T. J. & Luo, L. Teneurins instruct synaptic partner matching in an olfactory map. Nature 484, 201–207 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosca, T. J., Hong, W., Dani, V. S., Favaloro, V. & Luo, L. Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice. Nature 484, 237–241 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, L. et al. Ig superfamily ligand and receptor pairs expressed in synaptic partners in Drosophila. Cell 163, 1756–1769 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrillo, R. A. et al. Control of synaptic connectivity by a network of Drosophila IgSF cell surface proteins. Cell 163, 1770–1782 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, S. et al. Interactions between the Ig-superfamily proteins DIP-α and Dpr6/10 regulate assembly of neural circuits. Neuron 100, 1369–1384.e1366 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashley, J. et al. Transsynaptic interactions between IgSF proteins DIP-α and Dpr10 are required for motor neuron targeting specificity. eLife 8, e42690 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bornstein, B. et al. Transneuronal Dpr12/DIP-δ interactions facilitate compartmentalized dopaminergic innervation of Drosophila mushroom body axons. EMBO J. 40, e105763 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, J. et al. Brain wiring determinants uncovered by integrating connectomes and transcriptomes. Curr. Biol. 33, 3998–4005.e3996 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Dombrovski, M. et al. Molecular gradients shape synaptic specificity of a visuomotor transformation. Nature 644, 453–462 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrier, Y. et al. Biased cell adhesion organizes the Drosophila visual motion integration circuit. Dev. Cell 60, 762–779.e767 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Yamagata, M., Weiner, J. A. & Sanes, J. R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, X., Krishnaswamy, A., De la Huerta, I. & Sanes, J. R. Type II cadherins guide assembly of a direction-selective retinal circuit. Cell 158, 793–807 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, X. et al. Cadherin combinations recruit dendrites of distinct retinal neurons to a shared interneuronal scaffold. Neuron 99, 1145–1154.e1146 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inaki, M., Yoshikawa, S., Thomas, J. B., Aburatani, H. & Nose, A. Wnt4 is a local repulsive cue that determines synaptic target specificity. Curr. Biol. 17, 1574–1579 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, Q. et al. Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons. Proc. Natl Acad. Sci. USA 116, 16068–16073 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Jefferis, G. S. et al. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development 131, 117–130 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Wong, K. K. L. et al. Origin of wiring specificity in an olfactory map revealed by neuron type-specific, time-lapse imaging of dendrite targeting. eLife 12, e85521 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T. et al. Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging. Cell 184, 5107–5121.e5114 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. et al. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 187, 5081–5101.e5019 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, H.-H. et al. Hormonal modulation of pheromone detection enhances male courtship success. Neuron 90, 1272–1285 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. T. et al. Valence opponency in peripheral olfactory processing. Proc. Natl Acad. Sci. USA 119, e2120134119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurusu, M. et al. A screen of cell-surface molecules identifies leucine-rich repeat proteins as key mediators of synaptic target selection. Neuron 59, 972–985 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373–386.e315 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu, C., Li, Z., Xu, C., Kalai, J. & Luo, L. Rewiring an olfactory circuit by altering cell-surface combinatorial code. Nature https://doi.org/10.1038/s41586-025-09769-3 (2025).

  • Li, J. et al. Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels. eLife 7, e39088 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q., Bahri, S., Schmid, A., Chia, W. & Zinn, K. Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo. Development 127, 801–812 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Q., Schindelholz, B., Knirr, M., Schmid, A. & Zinn, K. Complex genetic interactions among four receptor tyrosine phosphatases regulate axon guidance in Drosophila. Mol. Cell. Neurosci. 17, 274–291 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Jeon, M. & Zinn, K. Receptor tyrosine phosphatases control tracheal tube geometries through negative regulation of Egfr signaling. Development 136, 3121–3129 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. K., Cording, A., Vielmetter, J. & Zinn, K. Interactions between a receptor tyrosine phosphatase and a cell surface ligand regulate axon guidance and glial–neuronal communication. Neuron 78, 813–826 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, M., Ohsawa, S., Kunimasa, K. & Igaki, T. The ligand Sas and its receptor PTP10D drive tumour-suppressive cell competition. Nature 542, 246–250 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Eldon, E. et al. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development 120, 885–899 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Brennan, C. A. & Anderson, K. V. Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22, 457–483 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Paré, A. C. et al. A positional Toll receptor code directs convergent extension in Drosophila. Nature 515, 523–527 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarado, D., Rice, A. H. & Duffy, J. B. Knockouts of Kekkon1 define sequence elements essential for Drosophila epidermal growth factor receptor inhibition. Genetics 166, 201–211 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musacchio, M. & Perrimon, N. The Drosophila kekkon genes: novel members of both the leucine-rich repeat and immunoglobulin superfamilies expressed in the CNS. Dev. Biol. 178, 63–76 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Özkan, E. et al. Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis. Cell 156, 482–494 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shelton, C., Kocherlakota, K. S., Zhuang, S. & Abmayr, S. M. The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts. Development 136, 1159–1168 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weavers, H. et al. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457, 322–326 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bali, N., Lee, H. P. & Zinn, K. Sticks and stones, a conserved cell surface ligand for the type IIa RPTP Lar, regulates neural circuit wiring in Drosophila. eLife 11, e71469 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, K., Fetter, R. D. & Bargmann, C. I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116, 869–881 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Serizawa, S. et al. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127, 1057–1069 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Ramani, S. R. et al. A secreted protein microarray platform for extracellular protein interaction discovery. Anal. Biochem. 420, 127–138 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Brasch, J. et al. Visualization of clustered protocadherin neuronal self-recognition complexes. Nature 569, 280–283 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Deconstruction of the beaten Path–Sidestep interaction network provides insights into neuromuscular system development. eLife 6, e28111 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Özkan, E. et al. An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell 154, 228–239 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang, S. et al. Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development 136, 2335–2344 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potter, C. J., Tasic, B., Russler, E. V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanca, O. et al. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. eLife 8, e51539 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gratz, S. J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029–1035 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gratz, S. J. et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196, 961–971 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, X. et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc. Natl Acad. Sci. USA 110, 19012–19017 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newsome, T. P., Asling, B. & Dickson, B. J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Tirian, L. & Dickson, B. J. The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. Preprint at bioRxiv, https://doi.org/10.1101/198648 (2017).

  • Xu, C., Li, Z. & Luo, L. Protocol for cell-type-specific single-cell labeling and manipulation in Drosophila using a sparse driver system. STAR Protoc. 6, 103694 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. S. & Luo, L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat. Protoc. 1, 2110–2115 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Nawrocka, W. I. et al. Nematode extracellular protein interactome expands connections between signaling pathways. Preprintat bioRxiv https://doi.org/10.1101/2024.07.08.602367 (2024).

  • Ghiglione, C. et al. The transmembrane molecule Kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell 96, 847–856 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Sweeney, L. B. et al. Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. Neuron 72, 734–747 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brovero, S. G. et al. Neurogenetic and genomic approaches reveal roles for Dpr/DIP cell adhesion molecules in Drosophila reproductive behavior. Preprint at bioRxiv https://doi.org/10.1101/2020.10.02.323477 (2020).

  • Chen, Y. D. et al. Using single-cell RNA sequencing to generate predictive cell-type-specific split-GAL4 reagents throughout development. Proc. Natl Acad. Sci. USA 120, e2307451120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosca, T. J. & Luo, L. Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. eLife 3, e03726 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berns, D. S., DeNardo, L. A., Pederick, D. T. & Luo, L. Teneurin-3 controls topographic circuit assembly in the hippocampus. Nature 554, 328–333 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments