Sunday, November 16, 2025
No menu items!
HomeNatureThe contribution of rock strength to soil production

The contribution of rock strength to soil production

  • Gilbert, G. K. Report on the Geology of the Henry Mountains (US Government Printing Office, 1877).

  • Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. The soil production function and landscape equilibrium. Nature 388, 358–361 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Larsen, I. J. et al. Rapid soil production and weathering in the Southern Alps, New Zealand. Science 343, 637–640 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • West, A. J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 40, 811–814 (2012).

    Article 

    Google Scholar
     

  • Roering, J. J., Marshall, J., Booth, A. M., Mort, M. & Jin, Q. Evidence for biotic controls on topography and soil production. Earth Planet. Sci. Lett. 298, 183–190 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gabet, E. J., Reichman, O. & Seabloom, E. W. The effects of bioturbation on soil processes and sediment transport. Annu. Rev. Earth Planet. Sci. 31, 249–273 (2003).

    Article 
    CAS 

    Google Scholar
     

  • St Clair, J. et al. Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350, 534–538 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Rempe, D. M. & Dietrich, W. E. A bottom-up control on fresh-bedrock topography under landscapes. Proc. Natl Acad. Sci. USA 111, 6576–6581 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkby, M. Hillslope process-response models based on the continuity equation. Inst. Br. Geogr. Spec. Publ. 3, 15–30 (1971).


    Google Scholar
     

  • Dietrich, W. E., Reiss, R., Hsu, M.-L. & Montgomery, D. R. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol. Process. 9, 383–400 (1995).

    Article 

    Google Scholar
     

  • Perron, J. T., Kirchner, J. W. & Dietrich, W. E. Formation of evenly spaced ridges and valleys. Nature 460, 502–505 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ferrier, K. & Perron, J. T. The importance of hillslope scale in responses of chemical erosion rate to changes in tectonics and climate. J. Geophys. Res. Earth Surf. 125, e2020JF005562 (2020).

    Article 

    Google Scholar
     

  • Hilley, G. E. & Arrowsmith, J. R. Geomorphic response to uplift along the Dragon’s Back pressure ridge, Carrizo Plain, California. Geology 36, 367–370 (2008).

    Article 

    Google Scholar
     

  • Arrowsmith, J. R. Coupled Tectonic Deformation and Geomorphic Degradation Along the San Andreas Fault System. PhD thesis, Stanford Univ. (1995).

  • Hurst, M. D., Mudd, S. M., Attal, M. & Hilley, G. Hillslopes record the growth and decay of landscapes. Science 341, 868–871 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heimsath, A. M. & Whipple, K. X. Strength matters: resisting erosion across upland landscapes. Earth Surf. Process. Landf. 44, 1748–1754 (2019).

    Article 

    Google Scholar
     

  • Heimsath, A. M., DiBiase, R. A. & Whipple, K. X. Soil production limits and the transition to bedrock-dominated landscapes. Nat. Geosci. 5, 210–214 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Berner, R. A., Lasaga, A. C. & Garrels, R. M. Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 641–683 (1983).

  • Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, J. L., Heimsath, A. M. & Amundson, R. The critical role of climate and saprolite weathering in landscape evolution. Earth Surf. Process. Landf. 34, 1507–1521 (2009).

    Article 

    Google Scholar
     

  • Dixon, J. L. & von Blanckenburg, F. Soils as pacemakers and limiters of global silicate weathering. C. R. Geosci. 344, 597–609 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Portenga, E. W. & Bierman, P. R. Understanding Earth’s eroding surface with 10Be. GSA Today 21, 4–10 (2011).

    Article 

    Google Scholar
     

  • Culling, W. E. H. Soil creep and the development of hillside slopes. J. Geol. 71, 127–161 (1963).

    Article 

    Google Scholar
     

  • Carson, M. A. & Kirkby, M. J. Hillslope Form and Process (Cambridge Univ. Press, 1972).

  • Burke, B. C., Heimsath, A. M. & White, A. F. Coupling chemical weathering with soil production across soil-mantled landscapes. Earth Surf. Process. Landf. 32, 853–873 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gabet, E. J. & Mudd, S. M. Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. J. Geophys. Res. Earth Surf. 115, F04005 (2010).

    Article 

    Google Scholar
     

  • Miller, D. J. & Dunne, T. Topographic perturbations of regional stresses and consequent bedrock fracturing. J. Geophys. Res. Solid Earth 101, 25523–25536 (1996).

    Article 

    Google Scholar
     

  • Sieh, K. E. & Jahns, R. H. Holocene activity of the San Andreas fault at Wallace Creek, California. Geol. Soc. Am. Bull. 95, 883–896 (1984).

    Article 

    Google Scholar
     

  • Harrison, E. J., Willenbring, J. & Brocard, G. Global rates of soil production independent of soil depth. Preprint at EarthArXiv https://eartharxiv.org/repository/view/1946/ (2021).

  • Anderson, S. P. Breaking it down: mechanical processes in the weathering engine. Elements 15, 247–252 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Eppes, M.-C. & Keanini, R. Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Rev. Geophys. 55, 470–508 (2017).

    Article 

    Google Scholar
     

  • Willenbring, J. K. & Jerolmack, D. J. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. Terra Nova 28, 11–18 (2016).

    Article 

    Google Scholar
     

  • Perron, J. T. Climate and the pace of erosional landscape evolution. Ann. Rev. Earth Planet. Sci. 45, 561–591 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wilkinson, B. H. & McElroy, B. J. The impact of humans on continental erosion and sedimentation. Geol. Soc. Am. Bull. 119, 140–156 (2007).

    Article 

    Google Scholar
     

  • Ferrier, K. L., Huppert, K. L. & Perron, J. T. Climatic control of bedrock river incision. Nature 496, 206–209 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • England, P. & Molnar, P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18, 1173–1177 (1990).

    Article 

    Google Scholar
     

  • Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range. Earth Surf. Process. Landf. 26, 531–552 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Roering, J. J. How well can hillslope evolution models explain topography? Simulating soil transport and production with high-resolution topographic data. Geol. Soc. Am. Bull. 120, 1248–1262 (2008).

    Article 

    Google Scholar
     

  • Anderson, S. P., Dietrich, W. E. & Brimhall Jr, G. H. Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment. Geol. Soc. Am. Bull. 114, 1143–1158 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Hayes, J. L., Riebe, C. S., Holbrook, W. S., Flinchum, B. A. & Hartsough, P. C. Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss. Sci. Adv. 5, eaao0834 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, K., Amundson, R., Heimsath, A. M. & Dietrich, W. E. Process-based model linking pocket gopher (Thomomys bottae) activity to sediment transport and soil thickness. Geology 33, 917–920 (2005).

    Article 

    Google Scholar
     

  • Manger, G. E. Porosity and Bulk Density of Sedimentary Rocks. Technical Report (US Geological Survey, 1963).

  • Tong, X., Sandwell, D. & Smith-Konter, B. High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR. J. Geophys. Res. Solid Earth 118, 369–389 (2013).

    Article 

    Google Scholar
     

  • Savage, J. C. Strain accumulation in western United States. Ann. Rev. Earth Planet. Sci. 11, 11–41 (1983).

    Article 

    Google Scholar
     

  • Noriega, G. R., Arrowsmith, J. R., Grant, L. B. & Young, J. J. Stream channel offset and late Holocene slip rate of the San Andreas fault at the Van Matre ranch site, Carrizo Plain, California. Bull. Seismol. Soc. Am. 96, 33–47 (2006).

    Article 

    Google Scholar
     

  • Liu-Zeng, J., Klinger, Y., Sieh, K., Rubin, C. & Seitz, G. Serial ruptures of the San Andreas fault, Carrizo Plain, California, revealed by three-dimensional excavations. J. Geophys. Res. Solid Earth 111, B02306 (2006).

    Article 

    Google Scholar
     

  • Grant Ludwig, L., Akciz, S. O., Arrowsmith, J. R. & Salisbury, J. B. Reproducibility of San Andreas fault slip rate measurements at Wallace Creek in the Carrizo Plain, CA. Earth Space Sci. 6, 156–165 (2019).

    Article 

    Google Scholar
     

  • Dascher-Cousineau, K., Finnegan, N. J. & Brodsky, E. E. The life span of fault-crossing channels. Science 373, 204–207 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gooley, J. T., Sharman, G. R. & Graham, S. A. Reconciling along-strike disparity in slip displacement of the San Andreas fault, central California, USA. Geol. Soc. Am. Bull. 133, 1441–1464 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huffman, O. F. Lateral displacement of upper Miocene rocks and the Neogene history of offset along the San Andreas fault in central California. Geol. Soc. Am. Bull. 83, 2913–2946 (1972).

    Article 

    Google Scholar
     

  • Ryder, R. T. & Thomson, A. Tectonically Controlled Fan Delta and Submarine Fan Sedimentation of Late Miocene Age, Southern Temblor Range, California. Professional Paper 1442 (US Geological Survey, 1989).

  • Stanley, R. G., Barron, J. A. & Powell II, C. L. Evaluation of Hypotheses for Right-Lateral Displacement of Neogene Strata Along the San Andreas Fault Between Parkfield and Maricopa, California. Report No. 2017-5125 (US Geological Survey, 2017).

  • Stanley, R. G. New estimates of displacement along the San Andreas fault in central California based on paleobathymetry and paleogeography. Geology 15, 171–174 (1987).

    Article 

    Google Scholar
     

  • Graham, S., Stanley, R. G., Bent, J. & Carter, J. Oligocene and Miocene paleogeography of central California and displacement along the San Andreas fault. Geol. Soc. Am. Bull. 101, 711–730 (1989).

    Article 

    Google Scholar
     

  • Bevis, M. & Hudnut, K. B4 Lidar Project: Airborne Laser Swath Mapping (ALSM) Survey of the San Andreas Fault (SAF) System of Central and Southern California, Including the Banning Segment of the SAF and the San Jacinto Fault System. Technical. Report, National Center for Airborne Laser Mapping (NCALM), US Geological Survey, the Ohio State University and the Southern California Integrated GPS Project (US Geological Survey, 2005).

  • Dibblee, T. et al. Regional Geologic Map of San Andreas Fault and Related Faults and Carrizo Plain, Temblor, Caliente, and La Panza Ranges and Vicinity, California. US Geological Survey Miscellaneous Geological Investigations, Map I-757, Scale 1:125,000 (US Geological Survey, 1973).

  • Bachmann, J., Contreras, K., Hartge, K. & MacDonald, R. Comparison of soil strength data obtained in situ with penetrometer and with vane shear test. Soil Tillage Res. 87, 112–118 (2006).

    Article 

    Google Scholar
     

  • Sucre, E. B., Tuttle, J. W. & Fox, T. R. The use of ground-penetrating radar to accurately estimate soil depth in rocky forest soils. For. Sci. 57, 59–66 (2011).


    Google Scholar
     

  • Dal Bo, I. et al. Geophysical imaging of regolith in landscapes along a climate and vegetation gradient in the Chilean coastal cordillera. Catena 180, 146–159 (2019).

    Article 

    Google Scholar
     

  • Schaller, M. et al. Comparison of regolith physical and chemical characteristics with geophysical data along a climate and ecological gradient, Chilean Coastal Cordillera (26–38° S). Soil 6, 629–647 (2020).

    Article 

    Google Scholar
     

  • Schwanghart, W. & Kuhn, N. J. TopoToolbox: a set of MATLAB functions for topographic analysis. Environ. Model. Softw. 25, 770–781 (2010).

    Article 

    Google Scholar
     

  • Sangireddy, H., Stark, C. P., Kladzyk, A. & Passalacqua, P. Geonet: an open source software for the automatic and objective extraction of channel heads, channel network, and channel morphology from high resolution topography data. Environ. Model. Softw. 83, 58–73 (2016).

    Article 

    Google Scholar
     

  • Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G. & Dietrich, W. E. A geometric framework for channel network extraction from lidar: nonlinear diffusion and geodesic paths. J.Geophys. Res. Earth Surf. 115, F01002 (2010).

    Article 

    Google Scholar
     

  • Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M. & Yoo, K. Using hilltop curvature to derive the spatial distribution of erosion rates. J. Geophys. Res. Earth Surf. 117, F02017 (2012).

    Article 

    Google Scholar
     

  • Clarke, B. A. & Burbank, D. W. Quantifying bedrock-fracture patterns within the shallow subsurface: implications for rock mass strength, bedrock landslides, and erodibility. J. Geophys. Res. Earth Surf. 116, F04009 (2011).

    Article 

    Google Scholar
     

  • Molnar, P. Interactions among topographically induced elastic stress, static fatigue, and valley incision. J. Geophys. Res. Earth Surf. 109, F02010 (2004).

    Article 

    Google Scholar
     

  • Molnar, P., Anderson, R. S. & Anderson, S. P. Tectonics, fracturing of rock, and erosion. J. Geophys. Res. Earth Surf. 112, F03014 (2007).

    Article 

    Google Scholar
     

  • Anderson, S. P., von Blanckenburg, F. & White, A. F. Physical and chemical controls on the critical zone. Elements 3, 315–319 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Whipple, K. X., Hancock, G. S. & Anderson, R. S. River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation. Geol. Soc. Am. Bull. 112, 490–503 (2000).

    Article 

    Google Scholar
     

  • Augustinus, P. C. Glacial valley cross-profile development: the influence of in situ rock stress and rock mass strength, with examples from the Southern Alps, New Zealand. Geomorphology 14, 87–97 (1995).

    Article 

    Google Scholar
     

  • Leith, K., Moore, J. R., Amann, F. & Loew, S. In situ stress control on microcrack generation and macroscopic extensional fracture in exhuming bedrock. J. Geophys. Res. Solid Earth Surf. 119, 594–615 (2014).

    Article 

    Google Scholar
     

  • Leith, K., Moore, J. R., Amann, F. & Loew, S. Subglacial extensional fracture development and implications for Alpine Valley evolution. J. Geophys. Res. Earth Surf. 119, 62–81 (2014).

    Article 

    Google Scholar
     

  • Li, G. K. & Moon, S. Topographic stress control on bedrock landslide size. Nat. Geosci. 14, 307–313 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Muller, J. R. & Martel, S. J. Numerical models of translational landslide rupture surface growth. Pure Appl. Geophys. 157, 1009–1038 (2000).

    Article 

    Google Scholar
     

  • Clarke, B. A. & Burbank, D. W. Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides. Earth Planet. Sci. Lett. 297, 577–586 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Selby, M. J. A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Z. Geomorphol. 24, 31–51 (1980).

    Article 

    Google Scholar
     

  • DiBiase, R. A., Rossi, M. W. & Neely, A. B. Fracture density and grain size controls on the relief structure of bedrock landscapes. Geology 46, 399–402 (2018).

    Article 

    Google Scholar
     

  • Neely, A. B., DiBiase, R. A., Corbett, L. B., Bierman, P. R. & Caffee, M. W. Bedrock fracture density controls on hillslope erodibility in steep, rocky landscapes with patchy soil cover, southern California, USA. Earth Planet. Sci. Lett. 522, 186–197 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Neely, A. B. & DiBiase, R. A. Drainage area, bedrock fracture spacing, and weathering controls on landscape-scale patterns in surface sediment grain size. J. Geophys. Res. Earth Surf. 125, e2020JF005560 (2020).

    Article 

    Google Scholar
     

  • Suppe, J. Geometry and kinematics of fault-bend folding. Am. J. Sci. 283, 684–721 (1983).

    Article 

    Google Scholar
     

  • Suppe, J. Principles of Structural Geology (Prentice Hall, 1985).

  • McTigue, D. F. & Mei, C. C. Gravity-induced stresses near topography of small slope. J. Geophys. Res. Solid Earth 86, 9268–9278 (1981).

    Article 

    Google Scholar
     

  • Savage, W. Z. & Swolfs, H. S. Tectonic and gravitational stress in long symmetric ridges and valleys. J. Geophys. Res. Solid Earth 91, 3677–3685 (1986).

    Article 

    Google Scholar
     

  • Savage, W. Z., Swolfs, H. S. & Powers, P. S. Gravitational stresses in long symmetric ridges and valleys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, 291–302 (1985).

    Article 

    Google Scholar
     

  • Slim, M., Perron, J. T., Martel, S. J. & Singha, K. Topographic stress and rock fracture: A two-dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations. Earth Surf. Process. Landf. 40, 512–529 (2015).

    Article 

    Google Scholar
     

  • Martel, S. J. Effect of topographic curvature on near-surface stresses and application to sheeting joints. Geophys. Res. Lett. 33, L01308 (2006).

    Article 

    Google Scholar
     

  • Martel, S. J. Mechanics of curved surfaces, with application to surface-parallel cracks. Geophys. Res. Lett. 38, L20303 (2011).

    Article 

    Google Scholar
     

  • Martel, S. J. Progress in understanding sheeting joints over the past two centuries. J. Struct. Geol. 94, 68–86 (2017).

    Article 

    Google Scholar
     

  • Davis, T., Healy, D., Bubeck, A. & Walker, R. Stress concentrations around voids in three dimensions: the roots of failure. J. Struct. Geol. 102, 193–207 (2017).

    Article 

    Google Scholar
     

  • Fernandes, N. F. & Dietrich, W. E. Hillslope evolution by diffusive processes: the timescale for equilibrium adjustments. Water Resour. Res. 33, 1307–1318 (1997).

    Article 

    Google Scholar
     

  • Geyman, E. C., Paige, D. A. & Lamb, M. P. Tectonic uplift, soil production, soil depth, and rock strength at the Dragon’s Back Pressure Ridge, Carrizo Plain, California. Zenodo. https://doi.org/10.5281/zenodo.12637755 (2024).

  • Brantley, S. L., Goldhaber, M. B. & Ragnarsdottir, K. V. Crossing disciplines and scales to understand the critical zone. Elements 3, 307–314 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Shaanan, U. et al. Progressive fracturing in alluvial clasts. Geol. Soc. Am. Bull. 136, 1097–1110 (2024).

    CAS 

    Google Scholar
     

  • Arrowsmith, J. R., Rhodes, D. D. & Pollard, D. D. Morphologic dating of scarps formed by repeated slip events along the San Andreas Fault, Carrizo Plain, California. J. Geophys. Res. Solid Earth 103, 10141–10160 (1998).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments