Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).
Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).
Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).
Wu, Y. & Wang, P. Silicon-stereogenic monohydrosilane: synthesis and applications. Angew. Chem. Int. Ed. 61, e202205382 (2022).
Xu, L.-W., Li, L., Lai, G.-Q. & Jiang, J.-X. The recent synthesis and application of silicon-stereogenic silanes: a renewed and significant challenge in asymmetric synthesis. Chem. Soc. Rev. 40, 1777–1790 (2011).
Grabulosa, A., Granell, J. & Muller, G. Preparation of optically pure P-stereogenic trivalent phosphorus compounds. Coord. Chem. Rev. 251, 25–90 (2007).
Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).
Fernández, I. & Khiar, N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev. 103, 3651–3706 (2003).
Han, J., Soloshonok, V. A., Klika, K. D., Drabowicz, J. & Wzorek, A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem. Soc. Rev. 47, 1307–1350 (2018).
Walsh, M. P., Phelps, J. M., Lennon, M. E., Yufit, D. S. & Kitching, M. O. Enantioselective synthesis of ammonium cations. Nature 597, 70–76 (2021).
Luo, Z. et al. Ionic hydrogen bond-assisted catalytic construction of nitrogen stereogenic center via formal desymmetrization of remote diols. Angew. Chem. Int. Ed. 63, e202404979 (2024).
Bhadra, S. & Yamamoto, H. Catalytic asymmetric synthesis of N-chiral amine oxides. Angew. Chem. Int. Ed. 55, 13043–13046 (2016).
Chattopadhyay, A. K. & Hanessian, S. Recent progress in the chemistry of daphniphyllum alkaloids. Chem. Rev. 117, 4104–4146 (2017).
Yuan, R. et al. The first direct synthesis of chiral Tröger’s bases catalyzed by chiral glucose-containing pyridinium ionic liquids. Chem. Eng. J. 316, 1026–1034 (2017).
Huang, S. et al. Organocatalytic enantioselective construction of chiral azepine skeleton bearing multiple-stereogenic elements. Angew. Chem. Int. Ed. 60, 21486–21493 (2021).
Ma, C., Sun, Y., Yang, J., Guo, H. & Zhang, J. Catalytic asymmetric synthesis of Tröger’s base analogues with nitrogen stereocenter. ACS Cent. Sci. 9, 64–71 (2023).
Yu, T. et al. Immobilizing stereogenic nitrogen center in doubly fused triarylamines through palladium-catalyzed asymmetric C−H activation/seven-membered-ring formation. ACS Catal. 13, 9688–9694 (2023).
Annunziata, R., Fornasier, R. & Montanari, F. Compounds with molecular asymmetry due solely to a tercovalent non-bridgehead nitrogen atom: optically active N-chloro-2,2-diphenylaziridine. J. Chem. Soc. Chem. Commun. 1972, 1133–1134 (1972).
Forni, A., Moretti, I., Prosyanik, A. V. & Torre, G. Optically active trifluoromethylcarbinols as chiral solvating agents for asymmetric transformations at a ring-nitrogen atom. J. Chem. Soc. Chem. Commun. 1981, 588–590 (1981).
Bucciarelli, M., Forni, A., Moretti, I. & Torre, G. Optically active trifluoromethylcarbinols as chiral solvating agents for asymmetric transformations at a ring-nitrogen atom. Synthesis of optically active N-chloroaziridines and stereochemical aspects of chiral solvent-aziridine solute complexes. J. Org. Chem. 48, 2640–2644 (1983).
Shustov, G. V. et al. Asymmetric nitrogen. 72. Geminal systems. 46. N-chlorooxaziridines: optical activation, absolute configuration, and chiroptical properties. J. Am. Chem. Soc. 111, 4210–4215 (1989).
Montanari, F., Moretti, I. & Torre, G. Asymmetric introduction at trivalent nitrogen. Optically active 2-methyl-3,3-diphenyloxaziridine, a compound with molecular asymmetry due solely to the nitrogen atom. Chem. Commun. 1968, 1694–1695 (1968).
Boyd, D. R. Optically active oxaziridines. Tetrahedron Lett. 9, 4561–4564 (1968).
Kostyanovsky, R. G., Rudchenko, V. F., Shtamburg, V. G., Chervin, I. I. & Nasibov, S. S. Asymmetrical nonbridgehead nitrogen—XXVI. Synthesis, configurational stability, and resolution of N,N-dialkoxyamines into antipodes. Tetrahedron 37, 4245–4254 (1981).
Smith, O. et al. Control of stereogenic oxygen in a helically chiral oxonium ion. Nature 615, 430–435 (2023).
Porto, C. M., de Barros, G. A., Santana, L. C., Moralles, A. C. & Morgon, N. H. Ammonia quantum tunneling in cold rare-gas He and Ar clusters and factorial design approach for methodology evaluation. J. Mol. Model. 28, 293 (2022).
Adams, R. & Cairns, T. L. Attempts to prepare optically active ethyleneimine derivatives containing an asymmetric nitrogen atom. J. Am. Chem. Soc. 61, 2464–2467 (1939).
Dunlop, H. G. & Tucker, S. H. Attempts to prepare optically active tervalent nitrogen compounds. Part I. Syntheses of 1:9-phenylenecarbazole and derivatives. J. Chem. Soc. 1939, 1945–1956 (1939).
Brois, S. J. Aziridines. XII. Isolation of a stable nitrogen pyramid. J. Am. Chem. Soc. 90, 508–509 (1968).
Rauk, A., Allen, L. C. & Mislow, K. Pyramidal inversion. Angew. Chem. Int. Ed. 9, 400–414 (1970).
Zaitseva, S. & Köhler, V. Pyramidal stereogenic nitrogen centers (SNCs). Synthesis 57, 1237–1254 (2025).
Shtamburg, V. G. et al. Reactions of N-chloro-N-alkoxy-tert-alkylamines with isobutylene and methanol. Russ. Chem. Bull. 40, 951–954 (1991).
Rudchenko, V. F. & Kostyanovskii, R. G. Geminal oxygen–nitrogen–halogen systems. N-halohydroxylamine derivatives. Russ. Chem. Rev. 67, 179–192 (1998).
Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).
Singh, V. K. et al. Taming secondary benzylic cations in catalytic asymmetric SN1 reactions. Science 382, 325–329 (2023).
Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363, 400–404 (2019).
Lovinger, G. J., Sak, M. H. & Jacobsen, E. N. Catalysis of an SN2 pathway by geometric preorganization. Nature 632, 1052–1059 (2024).
Denmark, S. E., Kuester, W. E. & Burk, M. T. Catalytic, asymmetric halofunctionalization of alkenes—a critical perspective. Angew. Chem. Int. Ed. 51, 10938–10953 (2012).
Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).
Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).
Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).
Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).
Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).
Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis. Science 358, 761–764 (2017).
Zhou, H. et al. Organocatalytic stereoselective cyanosilylation of small ketones. Nature 605, 84–89 (2022).
Wang, M. et al. Asymmetric hydrogenation of ketimines with minimally different alkyl groups. Nature 631, 556–562 (2024).
Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction‐activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).
Duan, M. et al. Chiral phosphoric acid catalyzed conversion of epoxides into thiiranes: mechanism, stereochemical model, and new catalyst design. Angew. Chem. Int. Ed. 61, e202113204 (2022).

