Wednesday, November 12, 2025
No menu items!
HomeNatureRadio burst from a stellar coronal mass ejection

Radio burst from a stellar coronal mass ejection

  • Kouloumvakos, A. et al. Properties of solar energetic particle events inferred from their associated radio emission. Astron. Astrophys. 580, A80 (2015).

    Article 

    Google Scholar
     

  • Badruddin, A. & Falak, Z. Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23. Astrophys. Space Sci. 361, 253 (2016).

    Article 

    Google Scholar
     

  • Khodachenko, M. L. et al. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 167–184 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Kay, C., Opher, M. & Kornbleuth, M. Probability of CME impact on exoplanets orbiting M dwarfs and solar-like stars. Astrophys. J. 826, 195 (2016).

    Article 

    Google Scholar
     

  • Varela, J. et al. MHD study of extreme space weather conditions for exoplanets with Earth-like magnetospheres: on habitability conditions and radio-emission. Space Weather 20, e2022SW003164 (2022).

    Article 

    Google Scholar
     

  • Houdebine, E. R., Foing, B. H. & Rodono, M. Dynamics of flares on late-type dMe stars. I. Flare mass ejections and stellar evolution. Astron. Astrophys. 238, 249–255 (1990).


    Google Scholar
     

  • Vida, K. et al. Investigating magnetic activity in very stable stellar magnetic fields. Long-term photometric and spectroscopic study of the fully convective M4 dwarf V374 Pegasi. Astron. Astrophys. 590, A11 (2016).

    Article 

    Google Scholar
     

  • Favata, F. & Schmitt, J. H. M. M. Spectroscopic analysis of a super-hot giant flare observed on Algol by BeppoSAX on 30 August 1997. Astron. Astrophys. 350, 900–916 (1999).


    Google Scholar
     

  • Loyd, R. O. P. et al. Constraining the physical properties of stellar coronal mass ejections with coronal dimming: application to far-ultraviolet data of ϵ Eridani. Astrophys. J. 936, 170 (2022).

    Article 

    Google Scholar
     

  • Gopalswamy, N. Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145–168 (2006).

    Article 

    Google Scholar
     

  • Gopalswamy, N. et al. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys. 26, 3033–3047 (2008).

    Article 

    Google Scholar
     

  • Feinstein, A. D. et al. Flare statistics for young stars from a convolutional neural network analysis of TESS data. Astron. J. 160, 219 (2020).

    Article 

    Google Scholar
     

  • Günther, M. N. et al. Stellar flares from the first TESS data release: exploring a new sample of M dwarfs. Astron. J. 159, 60 (2020).

    Article 

    Google Scholar
     

  • Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).

    Article 

    Google Scholar
     

  • Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Namekata, K. et al. Probable detection of an eruptive filament from a superflare on a solar-type star. Nat. Astron. 6, 241–248 (2021).

    Article 

    Google Scholar
     

  • Argiroffi, C. et al. A stellar flare-coronal mass ejection event revealed by X-ray plasma motions. Nat. Astron. 3, 742–748 (2019).

    Article 

    Google Scholar
     

  • Veronig, A. M. et al. Indications of stellar coronal mass ejections through coronal dimmings. Nat. Astron. 5, 697–706 (2021).

    Article 

    Google Scholar
     

  • Alvarado-Gómez, J. D., Drake, J. J., Cohen, O., Moschou, S. P. & Garraffo, C. Suppression of coronal mass ejections in active stars by an overlying large-scale magnetic field: a numerical study. Astrophys. J. 862, 93 (2018).

    Article 

    Google Scholar
     

  • Payne-Scott, R., Yabsley, D. E. & Bolton, J. G. Relative times of arrival of bursts of solar noise on different radio frequencies. Nature 160, 256–257 (1947).

    Article 

    Google Scholar
     

  • Wild, J. P. & McCready, L. L. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Aust. J. Sci. Res. A Phys. Sci. 3, 387–398 (1950).


    Google Scholar
     

  • Dulk, G. A. Radio emission from the sun and stars. Ann. Rev. Astron. Astrophys. 23, 169–224 (1985).

    Article 

    Google Scholar
     

  • Su, W., Cheng, X., Ding, M. D., Chen, P. F. & Sun, J. Q. A type II radio burst without a coronal mass ejection. Astrophys. J. 804, 88 (2015).

    Article 

    Google Scholar
     

  • Crosley, M. K. et al. The search for signatures of transient mass loss in active stars. Astrophys. J. 830, 24 (2016).

    Article 

    Google Scholar
     

  • Crosley, M. K. & Osten, R. A. Low-frequency radio transients on the active M-dwarf EQ Peg and the search for coronal mass ejections. Astrophys. J. 862, 113 (2018).

    Article 

    Google Scholar
     

  • Osten, R. A. & Wolk, S. J. A framework for finding and interpreting stellar CMEs. Proc. Int. Astron, Union 12, 243–251 (2016).

    Article 

    Google Scholar
     

  • Villadsen, J. & Hallinan, G. Ultra-wideband detection of 22 coherent radio bursts on M dwarfs. Astrophys. J. 871, 214 (2019).

    Article 

    Google Scholar
     

  • Zic, A. et al. A flare-type IV burst event from Proxima Centauri and implications for space weather. Astrophys. J. 905, 23 (2020).

    Article 

    Google Scholar
     

  • Alvarado-Gómez, J. D. et al. Tuning the exospace weather radio for stellar coronal mass ejections. Astrophys. J. 895, 47 (2020).

    Article 

    Google Scholar
     

  • Zic, A. et al. ASKAP detection of periodic and elliptically polarized radio pulses from UV Ceti. Mon. Not. R. Astron. Soc. 488, 559–571 (2019).

    Article 

    Google Scholar
     

  • Callingham, J. R. et al. Low-frequency monitoring of flare star binary CR Draconis: long-term electron-cyclotron maser emission. Astron. Astrophys. 648, A13 (2021).

    Article 

    Google Scholar
     

  • Bastian, T. S., Cotton, W. D. & Hallinan, G. Radio emission from UV Cet: auroral emission from a stellar magnetosphere. Astrophys. J. 935, 99 (2022).

    Article 

    Google Scholar
     

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 659, A1 (2022).

    Article 

    Google Scholar
     

  • Colman, I. L. et al. Methods for the detection of stellar rotation periods in individual TESS sectors and results from the prime mission. Astron. J. 167, 189 (2024).

    Article 

    Google Scholar
     

  • Mann, A. W. et al. How to constrain your M dwarf. II. The mass-luminosity-metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J. 871, 63 (2019).

    Article 

    Google Scholar
     

  • Gopalswamy, N. et al. Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560–569 (2008).

    Article 

    Google Scholar
     

  • Kumari, A., Morosan, D. E., Kilpua, E. K. J. & Daei, F. Type II radio bursts and their association with coronal mass ejections in solar cycles 23 and 24. Astron. Astrophys. 675, A102 (2023).

    Article 

    Google Scholar
     

  • Gopalswamy, N. et al. The SOHO/LASCO CME Catalog. Earth Moon Planets 104, 295–313 (2009).

    Article 

    Google Scholar
     

  • Maguire, C. A., Carley, E. P., Zucca, P., Vilmer, N. & Gallagher, P. T. LOFAR observations of a jet-driven piston shock in the low solar corona. Astrophys. J. 909, 2 (2021).

    Article 

    Google Scholar
     

  • Grognard, R. J. M. & McLean, D. J. Non-existence of linear polarization in type III solar bursts at 80 MHz. Sol. Phys. 29, 149–161 (1973).

    Article 

    Google Scholar
     

  • Dey, S., Kansabanik, D., Oberoi, D. & Mondal, S. First robust detection of linear polarization from metric solar emissions: challenging established paradigms. Astrophys. J. Lett. 988, L73 (2025).

    Article 

    Google Scholar
     

  • Stewart, R. T. The polarization of “herring-bone” features in solar radio bursts of spectral type II. Aust. J. Phys. 19, 209–213 (1966).

    Article 

    Google Scholar
     

  • Mann, G., Classen, T. & Aurass, H. Characteristics of coronal shock waves and solar type II radio bursts. Astron. Astrophys. 295, 775–781 (1995).


    Google Scholar
     

  • Testa, P., Drake, J. J. & Peres, G. The density of coronal plasma in active stellar coronae. Astrophys. J. 617, 508–530 (2004).

    Article 

    Google Scholar
     

  • Crosley, M. K. & Osten, R. A. Constraining stellar coronal mass ejections through multi-wavelength analysis of the active M dwarf EQ Peg. Astrophys. J. 856, 39 (2018).

    Article 

    Google Scholar
     

  • Robrade, J., Poppenhaeger, K. & Schmitt, J. H. M. M. Quiescent and flaring X-ray emission from the nearby M/T dwarf binary SCR 1845-6357. Astron. Astrophys. 513, A12 (2010).

    Article 

    Google Scholar
     

  • Giersch, O. D., Kennewell, J. & Lynch, M. Solar radio burst statistics and implications for space weather effects. Space Weather 15, 1511–1522 (2017).

    Article 

    Google Scholar
     

  • Gopalswamy, N. & Kundu, M. R. Estimation of the mass of a coronal mass ejection from radio observations. Astrophys. J. Lett. 390, L37 (1992).

    Article 

    Google Scholar
     

  • Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Article 

    Google Scholar
     

  • van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Article 

    Google Scholar
     

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release. Astron. Astrophys. 598, A104 (2017).

    Article 

    Google Scholar
     

  • Tasse, C. Applying Wirtinger derivatives to the radio interferometry calibration problem. Preprint at https://arxiv.org/abs/1410.8706 (2014).

  • Smirnov, O. M. & Tasse, C. Radio interferometric gain calibration as a complex optimization problem. Mon. Not. R. Astron. Soc. 449, 2668–2684 (2015).

    Article 

    Google Scholar
     

  • Tasse, C. et al. Faceting for direction-dependent spectral deconvolution. Astron. Astrophys. 611, A87 (2018).

    Article 

    Google Scholar
     

  • Tasse, C. et al. The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. I. Direction-dependent calibration and imaging. Astron. Astrophys. 648, A1 (2021).

    Article 

    Google Scholar
     

  • Callingham, J. R. et al. V-LoTSS: the circularly polarised LOFAR Two-metre Sky Survey. Astron. Astrophys. 670, A124 (2023).

    Article 

    Google Scholar
     

  • Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article 

    Google Scholar
     

  • Callingham, J. R. et al. The population of M dwarfs observed at low radio frequencies. Nat. Astron. 5, 1233–1239 (2021).

    Article 

    Google Scholar
     

  • Callingham, J. R., Farrell, S. A., Gaensler, B. M., Lewis, G. F. & Middleton, M. J. The X-Ray Transient 2XMMi J003833.3+402133: a candidate magnetar at high galactic latitude. Astrophys. J. 757, 169 (2012).

    Article 

    Google Scholar
     

  • Callingham, J. R. et al. Anisotropic winds in a Wolf–Rayet binary identify a potential gamma-ray burst progenitor. Nat. Astron. 3, 82–87 (2019).

    Article 

    Google Scholar
     

  • Arnaud, K. A. XSPEC: the first ten years. Proc. Astronomical Data Analysis Software and Systems V, Astronomical Society of the Pacific Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (Astronomical Society of the Pacific, 1996).

  • Johnstone, C. P. & Güdel, M. The coronal temperatures of low-mass main-sequence stars. Astron. Astrophys. 578, A129 (2015).

    Article 

    Google Scholar
     

  • Vedantham, H. K. et al. Coherent radio emission from a quiescent red dwarf indicative of star-planet interaction. Nat. Astron. 4, 577–583 (2020).

    Article 

    Google Scholar
     

  • Stepanov, A. V. et al. Microwave plasma emission of a flare on AD Leo. Astron. Astrophys. 374, 1072–1084 (2001).

    Article 

    Google Scholar
     

  • Giampapa, M. S. et al. The coronae of low-mass dwarf stars. Astrophys. J. 463, 707 (1996).

    Article 

    Google Scholar
     

  • Benz, A. O. Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae Vol. 184 (Kluwer Academic, 1993).

  • Reid, H. A. S. & Kontar, E. P. Langmuir wave electric fields induced by electron beams in the heliosphere. Astron. Astrophys. 598, A44 (2017).

    Article 

    Google Scholar
     

  • Louis, C. K. et al. ExPRES: an exoplanetary and planetary radio emissions simulator. Astron. Astrophys. 627, A30 (2019).

    Article 

    Google Scholar
     

  • Kavanagh, R. D. & Vedantham, H. K. Hunting for exoplanets via magnetic star–planet interactions: geometrical considerations for radio emission. Mon. Not. R. Astron. Soc. 524, 6267–6284 (2023).

    Article 

    Google Scholar
     

  • Kavanagh, R. D., Vedantham, H. K., Rose, K. & Bloot, S. Unravelling sub-stellar magnetospheres. Astron. Astrophys. 692, A66 (2024).

    Article 

    Google Scholar
     

  • Yu, S. et al. Detection of long-lasting aurora-like radio emission above a sunspot. Nat. Astron. 8, 50–59 (2024).

    Article 

    Google Scholar
     

  • Titov, V. S. & Démoulin, P. Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707–720 (1999).


    Google Scholar
     

  • Buchner, J. UltraNest – a robust, general purpose Bayesian inference engine. J. Open Source Softw. 6, 3001 (2021).

    Article 

    Google Scholar
     

  • Buchner, J. A statistical test for nested sampling algorithms. Stat. Comput. 26, 383–392 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Buchner, J. Collaborative nested sampling: Big Data versus complex physical models. Publ. Astron. Soc. Pac. 131, 108005 (2019).

    Article 

    Google Scholar
     

  • Hess, S., Cecconi, B. & Zarka, P. Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett. 35, L13107 (2008).

    Article 

    Google Scholar
     

  • Kaiser, M. L., Zarka, P., Kurth, W. S., Hospodarsky, G. B. & Gurnett, D. A. Cassini and Wind stereoscopic observations of Jovian nonthermal radio emissions: measurement of beam widths. J. Geophys. Res. Space Phys. 105, 16053–16062 (2000).

    Article 

    Google Scholar
     

  • Treumann, R. A. The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 13, 229–315 (2006).

    Article 

    Google Scholar
     

  • Ilin, E. et al. Giant white-light flares on fully convective stars occur at high latitudes. Mon. Not. R. Astron. Soc. 507, 1723–1745 (2021).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments