Friday, November 7, 2025
No menu items!
HomeNatureGlobal satellite survey reveals uncertainty in landfill methane emissions

Global satellite survey reveals uncertainty in landfill methane emissions

  • Ocko, I. B. et al. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environ. Res. Lett. 16, 054042 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • EDGAR — The Emissions Database for Global Atmospheric Research Community GHG Database v.8.0 (European Commission, 2018).

  • Jacob, D. J. et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmos. Chem. Phys. 22, 9617–9646 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Schuit, B. J. et al. Automated detection and monitoring of methane super-emitters using satellite data. Atmos. Chem. Phys. 23, 9071–9098 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Maasakkers, J. D. et al. Using satellites to uncover large methane emissions from landfills. Sci. Adv. 8, eabn9683 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. M.-C., Bodirsky, B. L., Krueger, T., Mishra, A. & Popp, A. The world’s growing municipal solid waste: trends and impacts. Environ. Res. Lett. 15, 074021 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kaza, S., Yao, L. C., Bhada-Tata, P. & Woerden, F. V. What a Waste 2.0 (The World Bank Group, 2018).

  • Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 673–816 (Cambridge Univ. Press, 2021).

  • Allan, R. P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 3–32 (Cambridge Univ. Press, 2021).

  • Allen, M. R. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 3–24 (Cambridge Univ. Press, 2018).

  • Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P. & Schöpp, W. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe–results from the GAINS model. Environ. Res. Commun. 2, 025004 (2020).

    Article 

    Google Scholar
     

  • Höglund-Isaksson, L. et al. Non-CO2 Greenhouse Gas Emissions in the EU-28 from 2005 to 2070: GAINS Model Methodology https://pure.iiasa.ac.at/id/eprint/16977/ (IIASA, 2018).

  • GHG Data from UNFCCC (UNFCCC, 2023).

  • Scharff, H. & Jacobs, J. Applying guidance for methane emission estimation for landfills. Waste Manag. 26, 417–429 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amini, H. R., Reinhart, D. R. & Mackie, K. R. Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag. 32, 305–316 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Methane emissions from landfills differentially underestimated worldwide. Nat. Sustain. 7, 496–507 (2024).

  • Nanda, S. & Berruti, F. Municipal solid waste management and landfilling technologies: a review. Environ. Chem. Lett. 19, 1433–1456 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mønster, J., Kjeldsen, P. & Scheutz, C. Methodologies for measuring fugitive methane emissions from landfills—a review. Waste Manag. 87, 835–859 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nisbet, E. G. et al. Methane mitigation: methods to reduce emissions, on the path to the Paris Agreement. Rev. Geophys. 58, e2019RG000675 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Varon, D. J. et al. Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmos. Meas. Tech. 11, 5673–5686 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Irakulis-Loitxate, I., Guanter, L., Maasakkers, J. D., Zavala-Araiza, D. & Aben, I. Satellites detect abatable super-emissions in one of the world’s largest methane hotspot regions. Environ. Sci. Technol. 56, 2143–2152 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Guanter, L. et al. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sens. Environ. 265, 112671 (2021).

    Article 

    Google Scholar
     

  • Roger, J. et al. High-resolution methane mapping with the EnMAP satellite imaging spectroscopy mission. IEEE Trans. Geosci. Remote Sens. 62, 1–12 (2024).

    Article 

    Google Scholar
     

  • Thorpe, A. K. et al. Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Sci. Adv. 9, eadh2391 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherwin, E. D. et al. Single-blind validation of space-based point-source detection and quantification of onshore methane emissions. Sci. Rep. 13, 3836 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Varon, D. J. et al. Satellite discovery of anomalously large methane point sources from oil/gas production. Geophys. Res. Lett. 46, 13507–13516 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Varon, D. J., Jacob, D. J., Jervis, D. & McKeever, J. Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations. Environ. Sci. Technol. 54, 10246–10253 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • MacLean, J.-P. W. et al. Offshore methane detection and quantification from space using sun glint measurements with the GHGSat constellation. Atmos. Meas. Tech. 17, 863–874 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pandey, S. et al. Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proc. Natl Acad. Sci. USA 116, 26376–26381 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lauvaux, T. et al. Global assessment of oil and gas methane ultra-emitters. Science 375, 557–561 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Sadavarte, P. et al. Methane emissions from superemitting coal mines in Australia quantified using TROPOMI satellite observations. Environ. Sci. Technol. 55, 16573–16580 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Tu, Q. et al. Quantifying CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method. Atmos. Chem. Phys. 22, 9747–9765 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Tu, Q. et al. Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI. Atmos. Chem. Phys. 22, 295–317 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lorente, A., Borsdorff, T., Martinez-Velarte, M. C. & Landgraf, J. Accounting for surface reflectance spectral features in TROPOMI methane retrievals. Atmos. Meas. Tech. 16, 1597–1608 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hopkins, F. M. et al. Mitigation of methane emissions in cities: how new measurements and partnerships can contribute to emissions reduction strategies. Earths Future 4, 408–425 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Young, A. Volumetric changes in landfill gas flux in response to variations in atmospheric pressure. Waste Manag. Res. 8, 379–385 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L., Lin, X., Amen, J., Welding, K. & McDermitt, D. Impact of changes in barometric pressure on landfill methane emission. Global Biogeochem. Cycles 28, 679–695 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kissas, K., Ibrom, A., Kjeldsen, P. & Scheutz, C. Annual upscaling of methane emission field measurements from two Danish landfills, using empirical emission models. Waste Manag. 150, 191–201 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cusworth, D. H. et al. Quantifying methane emissions from United States landfills. Science 383, 1499–1504 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Climate TRACE Emissions Inventory Tracking Real-time Atmospheric Carbon Emissions (Climate TRACE, 2023).

  • Greenhouse Gas Reporting Program (GHGRP) (US Environmental Protection Agency, 2023).

  • Greenhouse Gas Reporting Program (GHGRP)—Facility Greenhouse Gas (GHG) Data (Government of Canada, 2023).

  • European Pollutant Release and Transfer Register (E-PRTR) (European Environment Agency, 2024).

  • Stark, B. M., Tian, K. & Krause, M. J. Investigation of U.S. landfill GHG reporting program methane emission models. Waste Manag. 186, 86–93 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, P. et al. Detection and long-term quantification of methane emissions from an active landfill. Atmos. Meas. Tech. 17, 1229–1250 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Scarpelli, T. R. et al. Investigating major sources of methane emissions at US landfills. Environ. Sci. Technol. 58, 21545–21556 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nesser, H. et al. High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills. Atmos. Chem. Phys. 24, 5069–5091 (2024).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (SR) (European Union, 2025).

  • Veefkind, J. P. et al. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 120, 70–83 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Jervis, D. et al. The GHGSat-D imaging spectrometer. Atmos. Meas. Tech. 14, 2127–2140 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ramier, A. et al. High resolution methane detection with the GHGSat constellation. In Proc. IAF Global Space Conference on Climate Change (GLOC, 2023).

  • Molod, A. et al. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna https://ntrs.nasa.gov/citations/20120011790 (NASA, 2012).

  • Sherwin, E. D. et al. Single-blind test of nine methane-sensing satellite systems from three continents. Atmos. Meas. Tech. 17, 765–782 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Maasakkers, J. D. et al. EDAP+TN on GHGSat Validation https://earth.esa.int/documents/d/earth-online/technical-note-on-ghgsat-validation-pdf (European Space Agency, 2023).

  • Livingston, D. C. Colorimetric analysis of the NTSC color television system. Proc. IRE 42, 138–150 (1954).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Wang, Z. & Bovik, A. C. Mean squared error: love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 26, 98–117 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Dogniaux, M. et al. GHGSat plume dataset for article Global satellite survey reveals uncertainty in landfill methane emissions. Zenodo https://doi.org/10.5281/zenodo.16641834 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments