Thursday, November 6, 2025
No menu items!
HomeNatureMillisecond lifetimes and coherence times in 2D transmon qubits

Millisecond lifetimes and coherence times in 2D transmon qubits

  • Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crowley, K. D. et al. Disentangling losses in tantalum superconducting circuits. Phys. Rev. X 13, 041005 (2023).

    CAS 

    Google Scholar
     

  • Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, M. et al. Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits. Natl Sci. Rev. 9, nwab011 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barends, R. et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6, 7654 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcos, D., Rabl, P., Rico, E. & Zoller, P. Superconducting circuits for quantum simulation of dynamical gauge fields. Phys. Rev. Lett. 111, 110504 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K. et al. Synthesizing five-body interaction in a superconducting quantum circuit. Phys. Rev. Lett. 128, 190502 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kollár, A. J., Fitzpatrick, M. & Houck, A. A. Hyperbolic lattices in circuit quantum electrodynamics. Nature 571, 45–50 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Andersen, T. I. et al. Thermalization and criticality on an analogue-digital quantum simulator. Nature 638, 79–85 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. B. et al. High-coherence fluxonium qubit. Phys. Rev. X 9, 041041 (2019).

    CAS 

    Google Scholar
     

  • Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gyenis, András et al. Experimental realization of a protected superconducting circuit derived from the 0–π qubit. PRX Quantum 2, 010339 (2021).

    Article 

    Google Scholar
     

  • Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf. 8, 3 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gao, D. et al. Establishing a new benchmark in quantum computational advantage with 105-qubit Zuchongzhi 3.0 processor. Phys. Rev. Lett. 134, 090601 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordon, R. T. et al. Environmental radiation impact on lifetimes and quasiparticle tunneling rates of fixed-frequency transmon qubits. Appl. Phys. Lett. 120, 074002 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Deng, H. et al. Titanium nitride film on sapphire substrate with low dielectric loss for superconducting qubits. Phys. Rev. Appl. 19, 024013 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Biznárová, J. et al. Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits. npj Quantum Inf. 10, 78 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bal, M. et al. Systematic improvements in transmon qubit coherence enabled by niobium surface encapsulation. npj Quantum Inf. 10, 43 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kono, S. et al. Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms. Nat. Commun. 15, 3950 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuokkola, M. et al. Methods to achieve near-millisecond energy relaxation and dephasing times for a superconducting transmon qubit. Nat. Commun. 16, 5421 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read, A. P. et al. Precision measurement of the microwave dielectric loss of sapphire in the quantum regime with parts-per-billion sensitivity. Phys. Rev. Appl. 19, 034064 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z.-H. et al. Acceptor-induced bulk dielectric loss in superconducting circuits on silicon. Phys. Rev. X 14, 041022 (2024).

    CAS 

    Google Scholar
     

  • Lozano, D. P. et al. Low-loss α-tantalum coplanar waveguide resonators on silicon wafers: fabrication, characterization and surface modification. Mater. Quantum Technol. 4, 025801 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martinis, J. M. & Megrant, A. UCSB final report for the CSQ program: review of decoherence and materials physics for superconducting qubits. Preprint at https://arxiv.org/abs/1410.5793 (2014).

  • McRae, C. R. H. et al. Reproducible coherence characterization of superconducting quantum devices. Appl. Phys. Lett. 119, 100501 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Klimov, P. V. et al. Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett. 121, 090502 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Surface participation and dielectric loss in superconducting qubits. Appl. Phys. Lett. 107, 162601 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Schlör, S. et al. Correlating decoherence in transmon qubits: low frequency noise by single fluctuators. Phys. Rev. Lett. 123, 190502 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Dwyer, B. L. et al. Probing spin dynamics on diamond surfaces using a single quantum sensor. PRX Quantum 3, 040328 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, F. et al. Distinguishing coherent and thermal photon noise in a circuit quantum electrodynamical system. Phys. Rev. Lett. 120, 260504 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertet, P. et al. Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95, 257002 (2005).

  • Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wood, C. J. & Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 97, 032306 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gambetta, J. M., Motzoi, F., Merkel, S. T. & Wilhelm, F. K. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A 83, 012308 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chow, J. M. et al. Optimized driving of superconducting artificial atoms for improved single-qubit gates. Phys. Rev. A 82, 040305 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z. et al. Error per single-qubit gate below 10−4 in a superconducting qubit. npj Quantum Inf. 9, 111 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hyyppä, E. et al. Reducing leakage of single-qubit gates for superconducting quantum processors using analytical control pulse envelopes. PRX Quantum 5, 030353 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Sunada, Y. et al. Photon-noise-tolerant dispersive readout of a superconducting qubit using a nonlinear Purcell filter. PRX Quantum 5, 010307 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, G., Liu, Y., Raftery, J. J. & Houck, A. A. Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit. npj Quantum Inf. 3, 1 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chang, R. D. et al. Eliminating surface oxides of superconducting circuits with noble metal encapsulation. Phys. Rev. Lett. 134, 097001 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatia, E. et al. Chemical mechanical planarization for Ta-based superconducting quantum devices. J. Vac. Sci. Technol. B 41, 033202 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Van Damme, J. et al. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature 634, 74–79 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi, V. et al. Suppression of crosstalk in superconducting qubits using dynamical decoupling. Phys. Rev. Appl. 18, 024068 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Connolly, T. et al. Coexistence of nonequilibrium density and equilibrium energy distribution of quasiparticles in a superconducting qubit. Phys. Rev. Lett. 132, 217001 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahrami, F. et al. Vortex motion induced losses in tantalum resonators. Preprint at https://arxiv.org/abs/2503.03168 (2025).

  • McEwen, M. et al. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys. 18, 107–111 (2021).

    Article 

    Google Scholar
     

  • Harrington, P. M. et al. Synchronous detection of cosmic rays and correlated errors in superconducting qubit arrays. Nat. Commun. 16, 6428 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Z. H., Li, P. Y. & Meng, X. K. Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films. Mater. Sci. Eng. A 516, 253–258 (2009).

    Article 

    Google Scholar
     

  • Stefanazzi, L. et al. The QICK (Quantum Instrumentation Control Kit): readout and control for qubits and detectors. Rev. Sci. Instrum. 93, 044709 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments