Thursday, November 6, 2025
No menu items!
HomeNatureDispersion-engineered multipass optical parametric amplification

Dispersion-engineered multipass optical parametric amplification

  • Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Butkus, R. Progress in chirped pulse optical parametric amplifiers. Appl. Phys. B 79, 693–700 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Cerullo, G. & de Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Jeys, T. H. Multipass optical parametric amplifier. Opt. Lett. 21, 1229–1231 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Manzoni, C. & Cerullo, G. Design criteria for ultrafast optical parametric amplifiers. J. Opt. 18, 103501 (2016).

    ADS 

    Google Scholar
     

  • Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Yanagimoto, R. et al. Quantum nondemolition measurements with optical parametric amplifiers for ultrafast universal quantum information processing. PRX Quantum 4, 010333 (2023).

  • Kalash, M. & Chekhova, M. V. Wigner function tomography via optical parametric amplification. Optica 10, 1142 (2023).

    ADS 

    Google Scholar
     

  • Günter, G. et al. Sub-cycle switch-on of ultrastrong light-matter interaction. Nature 458, 178–181 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • Agostini, P. & DiMauro, L. F. The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813–855 (2004).

    ADS 

    Google Scholar
     

  • Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS 

    Google Scholar
     

  • Kotur, M. et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 7, 10566 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. & Xu, C. Three-photon neuronal imaging in deep mouse brain. Optica 7, 947 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Steinberg, I. et al. Photoacoustic clinical imaging. Photoacoustics 14, 77–98 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroll, N. M. Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies. Phys. Rev. 127, 1207–1211 (1962).

    ADS 

    Google Scholar
     

  • Wang, C. C. & Racette, G. W. Measurement of parametric gain accompanying optical difference frequency generation. Appl. Phys. Lett. 6, 169–171 (1965).

    ADS 
    CAS 

    Google Scholar
     

  • Baumgartner, R. & Byer, R. Optical parametric amplification. IEEE J. Quantum Electron. 15, 432–444 (1979).

    ADS 

    Google Scholar
     

  • Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    ADS 
    CAS 

    Google Scholar
     

  • Steinle, T., Mörz, F., Steinmann, A. & Giessen, H. Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm. Opt. Lett. 41, 4863–4866 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baudisch, M., Wolter, B., Pullen, M., Hemmer, M. & Biegert, J. High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs. Opt. Lett. 41, 3583–3586 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, Y. et al. High-power and widely tunable mid-infrared optical parametric amplification based on PPMgLN. Opt. Lett. 41, 49–51 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nejbauer, M., Kardaś, T. M., Pastorczak, M. & Radzewicz, C. Broadly tunable femtosecond OPA pumped by 1030 nm Yb: KGW laser with a range of non-linear crystals tested. Infrared Phys. Technol. 135, 104953 (2023).

    CAS 

    Google Scholar
     

  • Thannheimer, J., Alabbadi, A., Steinle, T. & Giessen, H. Ultralow-noise sub-two-cycle pulses at 1600 nm from a compact fiber-feedback optical parametric oscillator system at 76 MHz. Opt. Lett. 50, 1337–1340 (2025).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, L., Chan, H.-Y., Alam, S., Richardson, D. J. & Shepherd, D. P. High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier. Opt. Express 23, 12613–12618 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Begishev, I. A. et al. Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification. Sov. J. Quantum Electron. 20, 1100–1103 (1990).

    ADS 

    Google Scholar
     

  • Lyons, S. C., Oppo, G.-L., Firth, W. J. & Barr, J. Beam-quality studies of nanosecond singly resonant optical parametric oscillators. IEEE J. Quantum Electron. 36, 541–549 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Rustad, G., Arisholm, G. & Farsund, Ø. Effect of idler absorption in pulsed optical parametric oscillators. Opt. Express 19, 2815–2830 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Moses, J. & Huang, S.-W. Conformal profile theory for performance scaling of ultrabroadband optical parametric chirped pulse amplification. J. Opt. Soc. Am. B 28, 812 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, X., Osgood, R. M., Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photon. 4, 557–560 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303 (2022).

    ADS 

    Google Scholar
     

  • Jankowski, M. et al. Quasi-static optical parametric amplification. Optica 9, 273 (2022).

    ADS 

    Google Scholar
     

  • Ma, J. et al. Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal. Optica 2, 1006 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Flemens, N., Swenson, N. & Moses, J. Efficient parametric amplification via simultaneous second harmonic generation. Opt. Express 29, 30590–30609 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Flemens, N. & Moses, J. Hermitian nonlinear wave mixing controlled by a PT-symmetric phase transition. Phys. Rev. Lett. 129, 153901 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arisholm, G., Paschotta, R. & Südmeyer, T. Limits to the power scalability of high-gain optical parametric amplifiers. J. Opt. Soc. Am. B 21, 578 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Jansonas, G., Budriūnas, R., Valiulis, G. & Varanavičius, A. Polarization-based idler elimination: enhancing the efficiency of optical parametric amplification. Opt. Express 31, 19794–19803 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stepanenko, Y. & Radzewicz, C. High-gain multipass noncollinear optical parametric chirped pulse amplifier. Appl. Phys. Lett. 86, 211120 (2005).

  • Harth, A. et al. Compact 200 kHz HHG source driven by a few-cycle OPCPA. J. Opt. 20, 14007 (2018).


    Google Scholar
     

  • Chalus, O., Bates, P. K., Smolarski, M. & Biegert, J. Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz. Opt. Express 17, 3587–3594 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Emons, M. et al. Sub-10-fs pulses from a MHz-NOPA with pulse energies of 0.4 microJ. Opt. Express 18, 1191–1196 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovalenko, N., Hariton, V., Fritsch, K. & Pronin, O. Free-space quasi-phase matching. Opt. Lett. 48, 6220–6223 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Viotti, A.-L. et al. Multi-pass cells for post-compression of ultrashort laser pulses. Optica 9, 197 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Hanna, M. et al. Nonlinear optics in multipass cells. Laser Photonics Rev. 15, 2100220 (2021).

  • Südmeyer, T. et al. Femtosecond fiber-feedback optical parametric oscillator. Opt. Lett. 26, 304–306 (2001).

    ADS 
    PubMed 

    Google Scholar
     

  • Hum, D. S. & Fejer, M. M. Quasi-phasematching. Comptes Rendus Phys. 8, 180–198 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Bahabad, A., Murnane, M. M. & Kapteyn, H. C. Quasi-phase-matching of momentum and energy in nonlinear optical processes. Nat. Photon. 4, 570–575 (2010).

    ADS 

    Google Scholar
     

  • Fattahi, H. et al. Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification. Opt. Express 20, 9833–9840 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krogen, P. et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat. Photon. 11, 222–226 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Mörz, F., Steinle, T., Steinmann, A. & Giessen, H. Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz. Opt. Express 23, 23960–23967 (2015).

  • Marangoni, M. et al. Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator. Opt. Lett. 32, 1489–1491 (2007).

  • Mundry, J., Lohrenz, J. & Betz, M. Tunable femtosecond near-IR source by pumping an OPA directly with a 90 MHz Yb:fiber source. Appl. Opt. 56, 3104–3108 (2017).

  • Krauth, J., Steinmann, A., Hegenbarth, R., Conforti, M. & Giessen, H. Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7 MHz Yb:KGW oscillator. Opt. Express 21, 11516–11522 (2013).

  • Killi, A. et al. Megahertz optical parametric amplifier pumped by a femtosecond oscillator. Opt. Lett. 31, 125–127 (2006).

  • Feng, X. et al. Broadband mid-IR light sources from difference frequency generators based on a 2-mm-long aperiodically-poled lithium-niobate crystal. IEEE Photonics J. 13, 1–5 (2021).

  • Feng, X., Shi, J., Liu, P. & Zhang, Z. Broadband mid-infrared coherent light source from fiber-laser-pumped difference frequency generators based on cascaded crystals. Opt. Express. 28, 14310–14318 (2020).

  • Gaida, C. et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt. Lett. 43, 5853–5856 (2018).

  • Butler, T. P. et al. Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region. Opt. Lett. 44, 1730–1733 (2019).

  • Gaida, C. et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power. Opt. Lett. 41, 4130–4133 (2016).

  • Imeshev, G. & Fermann, M. 230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber. Opt. Express 13, 7424–7431 (2005).

  • Heuermann, T., Gaida, C., Gebhardt, M. & Limpert, J. Thulium-doped nonlinear fiber amplifier delivering 50 fs pulses at 20 W of average power. Opt. Lett. 43, 4441–4444 (2018).

  • Nomura, N. & Fuji, T, Generation of watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier. Opt. Express 25, 13691–13696.

  • Mukhopadhyay, P. K., Ozgoren, K., Budunoglu, I. L. & Ilday, O. All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator. IEEE J. Select. Topics Quantum Electron. 15, 145–152 (2009).

  • Yang, P. et al. Highly stable Yb-fiber laser amplifier of delivering 32-μJ, 153-fs pulses at 1-MHz repetition rate. Appl. Phys. B 124, 169 (2018).

  • Hu, C. et al. Broadband high-power mid-IR femtosecond pulse generation from an ytterbium-doped fiber laser pumped optical parametric amplifier. Opt. Lett. 40, 5774–5777 (2015).

  • RELATED ARTICLES

    Most Popular

    Recent Comments