Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P. & Young, N. W. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 391, 778–780 (1998).
Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).
Fürst, J. et al. The safety band of antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).
Fox-Kemper, B. et al. Ocean, Cryosphere and Sea Level Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).
Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophys. Res. Lett. 31, L18401 (2004).
Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020670 (2004).
Robin, G. d. Q. & Adie, R. J. in Antarctic Research (eds Priestley, R. E., Adie, R. J. & Robin, G. d. Q.) 100–117 (Butterworths, London, 1964).
Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).
Vaughan, D. & Doake, C. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379, 328–331 (1996).
Cook, A. & Vaughan, D. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).
Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).
Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. 112, F03S28 (2007).
DeConto, R. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).
Bassis, J. N. et al. Stability of ice shelves and ice cliffs in a changing climate. Annu. Rev. Earth Planet Sci. 52, 221–247 (2024).
Davison, B. et al. Annual mass budget of Antarctic ice shelves from 1997 to 2021. Sci. Adv. 9, eadi0186 (2023).
Paolo, F., Fricker, H. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).
Kittel, C. et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).
van Wessem, J. M., van den Broeke, M. R., Wouters, B. & Lhermitte, S. Variable temperature thresholds of melt pond formation on antarctic ice shelves. Nat. Clim. Change 13, 161–166 (2023).
Timmermann, R. & Hellmer, H. H. Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dyn. 63, 1011–1026 (2013).
Mathiot, P. & Jourdain, N. Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario. Ocean Sci. 19, 1595–1615 (2023).
Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).
Scambos, T., Hulbe, C. & Fahnestock, M. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (eds Domack, E., Levente, A., Burnet, A., Bindschadler, R., Convey, P. & Kirby, M.) 79–92 (American Geophysical Union, Washington DC, 2003).
Skvarca, P., De Angelis, H. & Zakrajsek, A. F. Climatic conditions, mass balance and dynamics of Larsen B Ice Shelf, Antarctic Peninsula, prior to collapse. Ann. Glaciol. 39, 557–562 (2004).
Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).
Shepherd, A., Wingham, D., Payne, T. & Skvarca, P. Larsen Ice Shelf has progressively thinned. Science 302, 856–859 (2003).
Lhermitte, S., Wouters, B. & HiRISE Team. The triggers for Conger Ice Shelf demise: long-term weakening vs. short-term collapse, EGU–16400 (2023).
Walker, C. et al. The multi-decadal collapse of East Antarctica’s Conger-Glenzer Ice Shelf. Nat. Geosci. 17, 1240–1248 (2024).
Wild, C. T. et al. Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica. Cryosphere 16, 397–417 (2022).
Lenaerts, J. T. M. et al. Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling. Ann. Glaciol. 59, 29–41 (2018).
Donat-Magnin, M. et al. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. Cryosphere 15, 571–593 (2021).
Rignot, E., Vaughan, D. G., Schmeltz, M., Dupont, T. & MacAyeal, D. Acceleration of Pine island and Thwaites glaciers, west Antarctica. Ann. Glaciol. 34, 189–194 (2002).
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).
Lhermitte, S. et al. Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proc. Natl Acad. Sci. USA 117, 24735–24741 (2020).
Seroussi, H. et al. Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty. Cryosphere 17, 5197–5217 (2023).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Jourdain, N. C., Amory, C., Kittel, C. & Durand, G. Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200. Cryosphere 19, 1641–1674 (2025).
Burgard, C., Jourdain, N., Reese, R., Jenkins, A. & Mathiot, P. An assessment of basal melt parameterisations for Antarctic ice shelves. Cryosphere 16, 4931–4975 (2022).
Burgard, C. et al. Emulating present and future simulations of melt rates at the base of Antarctic ice shelves with neural networks. J. Adv. Model. Earth Syst. 15, e2023MS003829 (2023).
Park, J.-Y. et al. Future sea-level projections with a coupled atmosphere–ocean–ice-sheet model. Nat. Commun. 14, 636 (2023).
Coulon, V. et al. Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model. Cryosphere 18, 653–681 (2024).
Morlighem, M. et al. The West Antarctic Ice Sheet may not be vulnerable to marine ice cliff instability during the 21st century. Sci. Adv. 10, eado7794 (2024).
Morris, E. M. & Vaughan, D. G. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (eds Domack, E., Levente, A., Burnet, A., Bindschadler, R., Convey, P. & Kirby, M.) 61–68 (American Geophysical Union, 2003).
Benn, D. et al. Rapid fragmentation of Thwaites Eastern Ice Shelf. Cryosphere 16, 2545–2564 (2022).
Wild, C. et al. Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt rates. J. Glaciol. 70, e21 (2024).
De Rydt, J. & Naughten, K. Geometric amplification and suppression of ice-shelf basal melt in West Antarctica. Cryosphere 18, 1863–1888 (2024).
Bradley, A. T., Bett, D. T., Dutrieux, P., De Rydt, J. & Holland, P. R. The influence of Pine Island ice shelf calving on basal melting. J. Geophys. Res. 127, e2022JC018621 (2022).
Beadling, R. et al. Representation of Southern Ocean properties across coupled model intercomparison project generations: CMIP3 to CMIP6. J. Clim. 33, 6555–6581 (2020).
Heuzé, C. Antarctic bottom water and North Atlantic deep water in CMIP6 models. Ocean Sci. 17, 59–90 (2021).
Smith, R. et al. Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic ice sheets. J. Adv. Model. Earth Syst. 13, e2021MS002520 (2021).
Martin, D. F., Cornford, S. L. & Payne, A. J. Millennial-scale vulnerability of the Antarctic Ice Sheet to regional ice shelf collapse. Geophys. Res. Lett. 46, 1467–1475 (2019).
Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).
Morlighem, M. MEaSUREs BedMachine Antarctica, Version 2 (2020) (NASA National Snow and Ice Data Center Distributed Active Archive Center; accessed 6 October 2025).
Jourdain, N. C. nicojourdain/CMIP6_data_to_ISMIP6_grid: v1.0. Zenodo https://doi.org/10.5281/zenodo.12755910 (2024).
Jourdain, N. et al. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. Cryosphere 14, 3111–3134 (2020).
Beckmann, A. & Goosse, H. A parameterization of ice shelf-ocean interaction for climate models. Ocean Model. 5, 157–170 (2003).
Holland, P., Jenkins, A. & Holland, D. The response of ice shelf basal melting to variations in ocean temperature. J. Clim. 21, 2558–2572 (2008).
Little, C. M., Gnanadesikan, A. & Oppenheimer, M. How ice shelf morphology controls basal melting. J. Geophys. Res. https://doi.org/10.1029/2008JC005197 (2009).
Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).
Lazeroms, W., Jenkins, A., Gudmunsson, G. & van de Wal, R. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere 12, 49–70 (2018).
Lazeroms, W., Jenkins, A., Rienstra, S. & van de Wal, R. An analytical derivation of ice-shelf basal melt based on the dynamics of meltwater plumes. J. Phys. Oceanogr. 49, 917–939 (2019).
Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X. & Winkelmann, R. Antarctic sub-shelf melt rates via PICO. Cryosphere 12, 1969–1985 (2018).
Lambert, E. & Burgard, C. Brief communication: sensitivity of Antarctic ice shelf melting to ocean warming across basal melt models. Cryosphere 19, 2495–2505 (2025).
Madec, G. & the NEMO System Team. NEMO ocean engine reference manual. Zenodo https://doi.org/10.5281/zenodo.1464816 (2019).
Tsujino, H. et al. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Model. 130, 79–139 (2018).
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).
Gallée, H. & Schayes, G. Development of a three-dimensional meso-γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Weather Rev. 122, 671–685 (1994).
Franco, B., Fettweis, X., Lang, C. & Erpicum, M. Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR. Cryosphere 6, 695–711 (2012).
Noël, B. et al. Higher Antarctic ice sheet accumulation and surface melt rates revealed at 2 km resolution. Nat. Commun. 14, 7949 (2023).
Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).
Gagliardini, O. et al. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev. 6, 1299–1318 (2013).
Brondex, J., Gillet-Chaulet, F. & Gagliardini, O. Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law. Cryosphere 13, 177–195 (2019).
Klein, E. et al. Annual cycle in flow of Ross Ice Shelf, Antarctica: contribution of variable basal melting. J. Glaciol. 66, 861–875 (2020).
Mosbeux, C., Padman, L., Klein, E., Bromirski, P. & Fricker, H. Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations. Cryosphere 17, 2585–2606 (2023).
Gillet-Chaulet, F. et al. Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier. Geophys. Res. Lett. 43, 10,311–10,321 (2016).
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).
Meehl, G. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).
Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs InSAR-based Antarctica Ice Velocity map, Version 2 (2017) (NASA National Snow and Ice Data Center Distributed Active Archive Center; accessed 6 October 2025).
van Wessem, J. M. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).
Forster, P. et al. in The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 923–1054 (IPCC, Cambridge Univ. Press, 2021).
Mastrandrea, M. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Intergovernmental Panel on Climate Change (IPCC, 2010).
Burgard, C. et al. Data and scripts to reproduce figures from “Ocean warming threatens the viability of 60% of Antarctic ice shelves”. Zenodo https://doi.org/10.5281/zenodo.13768758 (2025).

