Thursday, October 30, 2025
No menu items!
HomeNatureAtomically resolved edges and defects in lead halide perovskites

Atomically resolved edges and defects in lead halide perovskites

  • Ahmadi, M., Wu, T. & Hu, B. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29, 1605242 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, J. et al. Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Sci. Adv. 8, eabk2722 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Song, K. et al. Atomic-resolution imaging of halide perovskites using electron microscopy. Adv. Energy Mater. 10, 1904006 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dong, Y. et al. The role of surface termination in halide perovskites for efficient photocatalytic synthesis. Angew. Chem. 132, 13031–13037 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the a cation in halide perovskites. Science 375, eabj1186 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rothmann, M. U. et al. Atomic-scale microstructure of metal halide perovskite. Science 370, eabb5940 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Deterministic synthesis of a two-dimensional MAPbI3 nanosheet and twisted structure with moiré superlattice. J. Am. Chem. Soc. 146, 27861–27870 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Simultaneous atomic-resolution electron ptychography and z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. 7, 12532 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pennycook, T. J., Martinez, G. T., Nellist, P. D. & Meyer, J. C. High dose efficiency atomic resolution imaging via electron ptychography. Ultramicroscopy 196, 131–135 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, G., Zhang, H. & Han, Y. 4D-STEM ptychography for electron-beam-sensitive materials. ACS Cent. Sci. 8, 1579–1588 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Ptychographic observation of lithium atoms in the irradiation-sensitive garnet-type solid electrolyte at sub-angstrom resolution. J. Am. Chem. Soc. 147, 18025–18032 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 380, 633–638 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nat. Commun. 11, 2994 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sha, H. et al. Ptychographic measurements of varying size and shape along zeolite channels. Sci. Adv. 9, eadf1151 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. et al. Atomic resolution defocused electron ptychography at low dose with a fast, direct electron detector. Sci. Rep. 9, 3919 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jannis, D., Velazco, A., Béché, A. & Verbeeck, J. Reducing electron beam damage through alternative STEM scanning strategies, part II: attempt towards an empirical model describing the damage process. Ultramicroscopy 240, 113568 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jannis, D. et al. Event driven 4D STEM acquisition with a Timepix3 detector: microsecond dwell time and faster scans for high precision and low dose applications. Ultramicroscopy 233, 113423 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Pennycook, T. J. et al. Efficient phase contrast imaging in STEM using a pixelated detector. part 1: experimental demonstration at atomic resolution. Ultramicroscopy 151, 160–167 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Maiden, A. M., Mei, W. & Li, P. WASP: weighted average of sequential projections for ptychographic phase retrieval. Opt. Express 32, 21327–21344 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gao, C. et al. Overcoming contrast reversals in focused probe ptychography of thick materials: an optimal pipeline for efficiently determining local atomic structure in materials science. Appl. Phys. Lett. 121, 081906 (2022).

  • Clark, L. et al. The effect of dynamical scattering on single-plane phase retrieval in electron ptychography. Microsc. Microanal. 29, 384–394 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hofer, C., Gao, C., Chennit, T., Yuan, B. & Pennycook, T. J. Phase offset method of ptychographic contrast reversal correction. Ultramicroscopy 258, 113922 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. 23, 1222–1229 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Quarti, C., De Angelis, F. & Beljonne, D. Influence of surface termination on the energy level alignment at the CH3NH3PbI3 perovskite/C60 interface. Chem. Mater. 29, 958–968 (2017).

    Article 

    Google Scholar
     

  • Mirzehmet, A. et al. Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv. Mater. 33, 2004981 (2021).

    Article 

    Google Scholar
     

  • Kim, T. et al. Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat. Commun. 14, 1846 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yuan, B. et al. Atomically resolved edges and defects in lead halide perovskites. Zenodo https://doi.org/10.5281/zenodo.11482207 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments