Thursday, October 30, 2025
No menu items!
HomeNatureMultiple LDLR family members act as entry receptors for yellow fever virus

Multiple LDLR family members act as entry receptors for yellow fever virus

  • Pierson, T. C. & Diamond, M. S. The continued threat of emerging flaviviruses. Nat. Microbiol. 5, 796–812 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fishburn, A. T., Pham, O. H., Kenaston, M. W., Beesabathuni, N. S. & Shah, P. S. Let’s get physical: flavivirus-host protein-protein interactions in replication and pathogenesis. Front. Microbiol. 13, 847588 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anwar, M. N. et al. The interactions of flaviviruses with cellular receptors: Implications for virus entry. Virology 568, 77–85 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pan, Y. et al. Flaviviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Front. Immunol. 13, 829433 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes, R. L. et al. Kidney involvement in yellow fever: a review. Rev. Inst. Med. Trop. Sao Paulo 61, e35 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monath, T. P. & Vasconcelos, P. F. Yellow fever. J. Clin. Virol. 64, 160–173 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Collins, N. D. & Barrett, A. D. Live attenuated yellow fever 17D vaccine: a legacy vaccine still controlling outbreaks in modern day. Curr. Infect. Dis. Rep. 19, 14 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gianchecchi, E., Cianchi, V., Torelli, A. & Montomoli, E. Yellow fever-origin, epidemiology, preventive strategies and future prospects. Vaccines 10, 372 (2022).

  • Zimmerman, O., Holmes, A. C., Kafai, N. M., Adams, L. J. & Diamond, M. S. Entry receptors—the gateway to alphavirus infection. J. Clin. Invest. 133, e165307 (2023).

  • Hastings, A. K. et al. TAM receptors are not required for Zika virus infection in mice. Cell Rep. 19, 558–568 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laureti, M., Narayanan, D., Rodriguez-Andres, J., Fazakerley, J. K. & Kedzierski, L. Flavivirus receptors: diversity, identity, and cell entry. Front. Immunol. 9, 2180 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alen, M. M., Dallmeier, K., Balzarini, J., Neyts, J. & Schols, D. Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Res. 96, 280–287 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Perera-Lecoin, M., Meertens, L., Carnec, X. & Amara, A. Flavivirus entry receptors: an update. Viruses 6, 69–88 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carnec, X. et al. The phosphatidylserine and phosphatidylethanolamine receptor CD300a binds Dengue virus and enhances infection. J. Virol. 90, 92–102 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cordero-Rivera, C. D. et al. The importance of viral and cellular factors on flavivirus entry. Curr. Opin. Virol. 49, 164–175 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, E. & Lobigs, M. E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J. Virol. 82, 6024–6033 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nahain, A. A. et al. Antiviral activities of heparan sulfate mimetic RAFT polymers against mosquito-borne viruses. ACS Appl. Bio Mater. 7, 2862–2871 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Pönighaus, C. et al. Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans. J. Biol. Chem. 282, 5201–5206 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • DePew, A. T. & Mosca, T. J. Conservation and innovation: versatile roles for LRP4 in nervous system development. J. Dev. Biol. 9, 9 (2021).

  • Hoffmann, H. H. et al. TMEM41B is a pan-flavivirus host factor. Cell 184, 133–148 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, D. L. et al. The ER membrane protein complex promotes biogenesis of Dengue and Zika virus non-structural multi-pass transmembrane proteins to support infection. Cell Rep. 27, 1666–1674 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marceau, C. D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, H. et al. A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death. Cell Rep. 12, 673–683 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khandia, R. et al. Modulation of Dengue/Zika virus pathogenicity by antibody-dependent enhancement and strategies to protect against enhancement in Zika virus infection. Front. Immunol. 9, 597 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos-Peral, A. et al. Prior flavivirus immunity skews the yellow fever vaccine response to cross-reactive antibodies with potential to enhance dengue virus infection. Nat. Commun. 15, 1696 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. & Bailey, A. L. Two mutations in NS2B are responsible for attenuation of the yellow fever virus (YFV) vaccine strain 17D. PLoS Pathog. 21, e1013373 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Amino acid changes in two viral proteins drive attenuation of the yellow fever 17D vaccine. Nat. Microbiol. 10, 1902–1917 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdullahi, I. N. et al. The interplay between environmental factors, vector competence and vaccine immunodynamics as possible explanation of the 2019 yellow fever re-emergence in Nigeria. N. Microbes N. Infect. 41, 100858 (2021).

    Article 

    Google Scholar
     

  • Hobson-Peters, J. et al. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci. Transl. Med. 11, eaax7888 (2019).

  • Hardy, J. M. et al. A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nat. Commun. 12, 3266 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291–298 (1995).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Volk, D. E. et al. Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. J. Biol. Chem. 279, 38755–38761 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, D., Ma, B., Cao, Z., Zhang, X. & Xiang, Y. Structure of Semliki Forest virus in complex with its receptor VLDLR. Cell 186, 2208–2218 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, L. J. et al. Structural and functional basis of VLDLR usage by Eastern equine encephalitis virus. Cell 187, 360–374 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, C. W. et al. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J. Virol. 80, 1290–1301 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monath, T. P. & Barrett, A. D. Pathogenesis and pathophysiology of yellow fever. Adv. Virus Res. 60, 343–395 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Bailey, A. L. et al. Consumptive coagulopathy of severe yellow fever occurs independently of hepatocellular tropism and massive hepatic injury. Proc. Natl Acad. Sci. USA 117, 32648–32656 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier, K. C., Gardner, C. L., Khoretonenko, M. V., Klimstra, W. B. & Ryman, K. D. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog. 5, e1000614 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kafai, N. M. et al. Entry receptor LDLRAD3 is required for Venezuelan equine encephalitis virus peripheral infection and neurotropism leading to pathogenesis in mice. Cell Rep. 42, 112946 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, H. et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature 588, 308–314 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, E. B., Hammer, R. E. & Herz, J. Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum. Mol. Genet. 14, 3523–3538 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Weatherbee, S. D., Anderson, K. V. & Niswander, L. A. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133, 4993–5000 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Bhaskar, M., Satheesan, A. & Basu, A. Low-density lipoprotein receptor is an important host factor in flaviviral entry and replication in neurons. Biochem. Biophys. Res. Commun. 743, 151160 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Huerta, V. et al. The low-density lipoprotein receptor-related protein-1 is essential for dengue virus infection. Viruses 16, 1692 (2024).

  • Ganaie, S. S. et al. Lrp1 is a host entry factor for Rift Valley fever virus. Cell 184, 5163–5178 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willnow, T. E., Armstrong, S. A., Hammer, R. E. & Herz, J. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc. Natl Acad. Sci. USA 92, 4537–4541 (1995).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarz, M. M. et al. Oropouche orthobunyavirus infection is mediated by the cellular host factor Lrp1. Proc. Natl Acad. Sci. USA 119, e2204706119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, L. E. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 602, 475–480 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Shifts in receptors during submergence of an encephalitic arbovirus. Nature 632, 614–621 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai, X. et al. LDLR is used as a cell entry receptor by multiple alphaviruses. Nat. Commun. 15, 622 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palakurty, S. et al. The VLDLR entry receptor is required for the pathogenesis of multiple encephalitic alphaviruses. Cell Rep. 43, 114809 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erickson, A. K. & Pfeiffer, J. K. Spectrum of disease outcomes in mice infected with YFV-17D. J. Gen. Virol. 96, 1328–1339 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, B., Huang, C., Ma, J., Xiang, Y. & Zhang, X. Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature 598, 677–681 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shen, C., Xiong, W. C. & Mei, L. LRP4 in neuromuscular junction and bone development and diseases. Bone 80, 101–108 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, C. W. et al. The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J. Biol. Chem. 281, 37183–37194 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science264, 1918–1921 (1994).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • White, J. P. et al. Intestinal dysmotility syndromes following systemic infection by flaviviruses. Cell 175, 1198–1212 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R. E. et al. Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host Microbe 29, 1634–1648 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • VanBlargan, L. A. et al. Broadly neutralizing monoclonal antibodies protect against multiple tick-borne flaviviruses. J. Exp. Med. 218, e20210174 (2021).

  • McArthur, M. A., Suderman, M. T., Mutebi, J. P., Xiao, S. Y. & Barrett, A. D. Molecular characterization of a hamster viscerotropic strain of yellow fever virus. J. Virol. 77, 1462–1468 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goo, L., VanBlargan, L. A., Dowd, K. A., Diamond, M. S. & Pierson, T. C. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog. 13, e1006178 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G. C., Smith, D. K., Zhu, H. C., Guan, Y. & Lam, T. T. Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article 

    Google Scholar
     

  • Bodenhofer, U., Bonatesta, E., Horejs-Kainrath, C. & Hochreiter, S. msa: an R package for multiple sequence alignment. Bioinformatics 31, 3997–3999 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, M. P. et al. Isolation of a potently neutralizing and protective human monoclonal antibody targeting yellow fever virus. mBio 13, e0051222 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, A. S. et al. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 184, 4414–4429 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, C. A., Lee, C. A. & Fremont, D. H. Oxidative refolding from inclusion bodies. Methods Mol. Biol. 1140, 145–157 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Oliphant, T. et al. Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J. Virol. 80, 12149–12159 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • BIAevaluation Version 3.0 Software Handbook (Biacore AB, 1997).

  • RELATED ARTICLES

    Most Popular

    Recent Comments