Thursday, October 30, 2025
No menu items!
HomeNatureElectromagnetic interference shielding using metal and MXene thin films

Electromagnetic interference shielding using metal and MXene thin films

  • Joo, K. et al. High performance package-level EMI shielding of Ag epoxy composites with spray method for high frequency FCBGA package application. In Proc. 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC) 674–680 (IEEE, 2018).

  • Erickson, S. & Sakaguchi, M. Application of package-level high-performance EMI shield material with a novel nozzleless spray coating technology. In Proc. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) 1691–1696 (IEEE, 2020).

  • Zwenger, C. Enabling the 5G RF front-end module evolution with the DSMBGA package. Chip Scale Rev. 25, 26–33 (2021).


    Google Scholar
     

  • Zhang, X., Zhang, B. & Sun, R. Effective conformal EMI shielding coating for SiP modules with multi-shaped nano-Ag fillers. In Proc. 2022 23rd International Conference on Electronic Packaging Technology (ICEPT) 1–4 (IEEE, 2022).

  • Chung, D. D. L. Materials for electromagnetic interference shielding. J. Mater. Eng. Perform. 9, 350–354 (2000).

    Article 

    Google Scholar
     

  • Peng, M. & Qin, F. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130, 225108 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Isari, A. A., Ghaffarkhah, A., Hashemi, S. A., Wuttke, S. & Arjmand, M. Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 36, 2310683 (2024).

    Article 

    Google Scholar
     

  • Ji, K., Zhao, H., Zhang, J., Chen, J. & Dai, Z. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lee, S. H. et al. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9, 13432–13440 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, S. et al. Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, 1800634 (2018).

    Article 

    Google Scholar
     

  • Zeng, Z. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, 1908496 (2020).

    Article 

    Google Scholar
     

  • Choi, H. K. et al. Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding. ACS Nano 15, 829–839 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017).

    Article 

    Google Scholar
     

  • Zhou, Z. et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 1802040 (2019).

    Article 

    Google Scholar
     

  • Han, M. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7, 1900267 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cheng, Y. et al. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 15, 4916–4924 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y., Ruan, K., Zhou, K. & Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023).

    Article 

    Google Scholar
     

  • Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yoo, J.-Y. et al. Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring. Nat. Med. 29, 3137–3148 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sakuma, K. et al. CMOS-compatible wearable sensors fabricated using controlled spalling. IEEE Sens. J. 19, 7868–7874 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gebrael, T. et al. High-efficiency cooling via the monolithic integration of copper on electronic devices. Nat. Electron. 5, 394–402 (2022).

    Article 

    Google Scholar
     

  • Salvatore, G. A. et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 5, 2982 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Das Sharma, D. & Mahajan, R. V. Advanced packaging of chiplets for future computing needs. Nat. Electron. 7, 425–427 (2024).

    Article 

    Google Scholar
     

  • Schmitz, J. Low temperature thin films for next-generation microelectronics (invited). Surf. Coat. Technol. 343, 83–88 (2018).

    Article 

    Google Scholar
     

  • Yun, T. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020).

    Article 

    Google Scholar
     

  • Simon, R. M. EMI shielding through conductive plastics. Polym. Plast. Technol. Eng. 17, 1–10 (1981).

    Article 

    Google Scholar
     

  • Das, N. C. et al. Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49, 1627–1634 (2009).

    Article 

    Google Scholar
     

  • Han, M. et al. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano 14, 5008–5016 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xing, Y. et al. Multilayer ultrathin MXene@AgNW@MoS2 composite film for high-efficiency electromagnetic shielding. ACS Appl. Mater. Interfaces 15, 5787–5797 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Iqbal, A., Sambyal, P. & Koo, C. M. 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020).

    Article 

    Google Scholar
     

  • Song, W.-L. et al. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J Mater Chem C Mater 2, 5057–5064 (2014).

    Article 

    Google Scholar
     

  • Song, P. et al. Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion. Compos. Commun. 34, 101264 (2022).

    Article 

    Google Scholar
     

  • Calister, W. D. Jr & Rethwisch, D. G. Materials Science and Engineering: An Introduction, 10th edn (Wiley, 2018).

  • Liu, J. & Nicolosi, V. Electrically insulating electromagnetic interference shielding materials: a perspective. Adv. Funct. Mater. 35, 2407439 (2025).

    Article 

    Google Scholar
     

  • Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fei, Y. et al. Recent progress in TiO2-based microwave absorption materials. Nanoscale 15, 12193–12211 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Heterojunction engineering and ideal factor optimization toward efficient MINP perovskite solar cells. Adv. Energy Mater. 11, 2102724 (2021).

    Article 

    Google Scholar
     

  • Hong, J. et al. Electromagnetic shielding of optically-transparent and electrically-insulating ionic solutions. Chem. Eng. J. 438, 135564 (2022).

    Article 

    Google Scholar
     

  • Liu, J., Yu, M.-Y., Yu, Z.-Z. & Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023).

    Article 

    Google Scholar
     

  • Yeon, H.-W. et al. Cu diffusion-driven dynamic modulation of the electrical properties of amorphous oxide semiconductors. Adv. Funct. Mater. 27, 1700336 (2017).

    Article 

    Google Scholar
     

  • Kaloyeros, A. E. & Eisenbraun, E. Ultrathin diffusion barriers/liners for gigascale copper metallization. Annu. Rev. Mater. Sci. 30, 363–385 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Zaed, M. A. et al. Cost analysis of MXene for low-cost production, and pinpointing of its economic footprint. Open Ceram. 17, 100526 (2024).

    Article 

    Google Scholar
     

  • Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

    Article 

    Google Scholar
     

  • Guisbiers, G. & José-Yacaman, M. in Enclyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (ed. Wandelt, K.) 875–885 (Elsevier, 2018).

  • Tokuda, K., Ogino, T., Kotera, M. & Nishino, T. Simple method for lowering poly(methyl methacrylate) surface energy with fluorination. Polym. J. 47, 66–70 (2015).

    Article 

    Google Scholar
     

  • Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore–inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davuluri, P. & Chen, C. Radio frequency interference due to USB3 connector radiation. In Proc. 2013 IEEE International Symposium on Electromagnetic Compatibility 632–635 (IEEE, 2013).

  • RELATED ARTICLES

    Most Popular

    Recent Comments