Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Three ways to improve net-zero emissions targets. Nature 591, 365–368 (2021).
Song, A., Dan, Z., Zheng, S. & Zhou, Y. An electricity-driven mobility circular economy with lifecycle carbon footprints for climate-adaptive carbon neutrality transformation. Nat. Commun. 15, 5905 (2024).
Peiseler, L. et al. Carbon footprint distributions of lithium-ion batteries and their materials. Nat. Commun. 15, 10301 (2024).
Gutsch, M. & Leker, J. Costs, carbon footprint, and environmental impacts of lithium-ion batteries – from cathode active material synthesis to cell manufacturing and recycling. Appl. Energy 353, 122132 (2024).
Muratori, M. et al. The rise of electric vehicles—2020 status and future expectations. Prog. Energy 3, 22002 (2021).
Maisel, F., Neef, C., Marscheider-Weidemann, F. & Nissen, N. F. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour. Conserv. Recycl. 192, 106920 (2023).
Sadeghi, G. Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy Storage Mater. 46, 192–222 (2022).
Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).
Bistline, J. E. T. Roadmaps to net-zero emissions systems: emerging insights and modeling challenges. Joule 5, 2551–2563 (2021).
Markard, J. The next phase of the energy transition and its implications for research and policy. Nat. Energy 3, 628–633 (2018).
Carley, S. & Konisky, D. M. The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020).
Grey, C. P. & Hall, D. S. Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020).
Whittingham, M. S. Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 20, 8435–8437 (2020).
Kalair, A., Abas, N., Saleem, M. S., Kalair, A. R. & Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 3, e135 (2021).
Ma, R. et al. Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions. Nat. Commun. 15, 7641 (2024).
Gervillié-Mouravieff, C., Bao, W., Steingart, D. A. & Meng, Y. S. Non-destructive characterization techniques for battery performance and life-cycle assessment. Nat. Rev. Electr. Eng. 1, 547–558 (2024).
Kim, H. C., Lee, S. & Wallington, T. J. Cradle-to-gate and use-phase carbon footprint of a commercial plug-in hybrid electric vehicle lithium-ion battery. Environ. Sci. Technol. 57, 11834–11842 (2023).
Hossain, M. H., Chowdhury, M. A., Hossain, N., Islam, M. A. & Mobarak, M. H. Advances of lithium-ion batteries anode materials—a review. Chem. Eng. J. Adv. 16, 100569 (2023).
Zhu, J. et al. A method to prolong lithium-ion battery life during the full life cycle. Cell Rep. Phys. Sci. 4, 101464 (2023).
Arshad, F. et al. Life cycle assessment of lithium-ion batteries: a critical review. Resour. Conserv. Recycl. 180, 106164 (2022).
Liu, Z., Deng, Z., Davis, S. J., Giron, C. & Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 3, 217–219 (2022).
Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).
Liu, Z., Deng, Z., Davis, S. & Ciais, P. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 4, 205–206 (2023).
Nielsen, K. S. et al. Underestimation of personal carbon footprint inequality in four diverse countries. Nat. Clim. Change 14, 1136–1143 (2024).
Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5, 311–320 (2022).
Zhang, Z. et al. Embodied carbon emissions in the supply chains of multinational enterprises. Nat. Clim. Change 10, 1096–1101 (2020).
Chancel, L. Global carbon inequality over 1990–2019. Nat. Sustain. 5, 931–938 (2022).
Hua, Y. et al. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resour. Conserv. Recycl. 168, 105249 (2021).
Melin, H. E. et al. Global implications of the EU battery regulation. Science 373, 384–387 (2021).
Sun, X., Liu, Z., Zhao, F. & Hao, H. Global competition in the lithium-ion battery supply chain: a novel perspective for criticality analysis. Environ. Sci. Technol. 55, 12180–12190 (2021).
Porzio, J. & Scown, C. D. Life‐cycle assessment considerations for batteries and battery materials. Adv. Energy Mater. 11, 2100771 (2021).
Dunn, J., Slattery, M., Kendall, A., Ambrose, H. & Shen, S. Circularity of lithium-ion battery materials in electric vehicles. Environ. Sci. Technol. 55, 5189–5198 (2021).
Murdock, B. E., Toghill, K. E. & Tapia‐Ruiz, N. A perspective on the sustainability of cathode materials used in lithium‐ion batteries. Adv. Energy Mater. 11, 2102028 (2021).
Bird, R., Baum, Z. J., Yu, X. & Ma, J. The regulatory environment for lithium-ion battery recycling. ACS Energy Lett. 7, 736–740 (2022).
Trost, J. N. & Dunn, J. B. Assessing the feasibility of the Inflation Reduction Act’s EV critical mineral targets. Nat. Sustain. 6, 639–643 (2023).
Llamas-Orozco, J. A. et al. Estimating the environmental impacts of global lithium-ion battery supply chain: a temporal, geographical, and technological perspective. PNAS Nexus 2, pgad361 (2023).
Kelly, J. C., Wang, M., Dai, Q. & Winjobi, O. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries. Resour. Conserv. Recycl. 174, 105762 (2021).
Chen, Q. et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J. Clean. Prod. 369, 133342 (2022).
Duffner, F., Wentker, M., Greenwood, M. & Leker, J. Battery cost modeling: a review and directions for future research. Renew. Sustain. Energy Rev. 127, 109872 (2020).
Andersson, Ö. & Börjesson, P. The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: life cycle assessment and policy implications. Appl. Energy 289, 116621 (2021).
Bashmakov, I. A. et al. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 11 (Cambridge Univ. Press, 2022).
Geissdoerfer, M., Savaget, P., Bocken, N. M. P. & Hultink, E. J. The Circular Economy–a new sustainability paradigm? J. Clean. Prod. 143, 757–768 (2017).
Dai, M. et al. Country-specific net-zero strategies of the pulp and paper industry. Nature 626, 327–334 (2024).
Zeng, A. et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).
Dunn, J. B., Gaines, L., Kelly, J. C., James, C. & Gallagher, K. G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 8, 158–168 (2015).
International Energy Agency. Critical Minerals Market Review 2023 (OECD Publishing, 2023).
Duarte, R., Langarita, R. & Sánchez-Chóliz, J. The electricity industry in Spain: a structural analysis using a disaggregated input-output model. Energy 141, 2640–2651 (2017).
Lenzen, M. Aggregation versus disaggregation in input–output analysis of the environment. Econ. Syst. Res. 23, 73–89 (2011).
Narayanan, B. G., Hertel, T. W. & Horridge, J. M. Disaggregated data and trade policy analysis: the value of linking partial and general equilibrium models. Econ. Model. 27, 755–766 (2010).
Peters, J. C. The GTAP-power data base: disaggregating the electricity sector in the GTAP data base. J. Glob. Econ. Anal. 1, 209–250 (2016).
Zhai, M., Huang, G., Li, J., Pan, X. & Su, S. Development of a distributive Three Gorges Project input-output model to investigate the disaggregated sectoral effects of Three Gorges Project. Sci. Total Environ. 797, 148817 (2021).
Sun, C., Khan, A., Liu, Y. & Lei, N. An analysis of the impact of fiscal and monetary policy fluctuations on the disaggregated level renewable energy generation in the G7 countries. Renew. Energy 189, 1154–1165 (2022).
Islam, M. M., Sohag, K., Hammoudeh, S., Mariev, O. & Samargandi, N. Minerals import demands and clean energy transitions: a disaggregated analysis. Energy Econ. 113, 106205 (2022).
Ahmed, Z., Cary, M. & Le, H. P. Accounting asymmetries in the long-run nexus between globalization and environmental sustainability in the United States: an aggregated and disaggregated investigation. Environ. Impact Assess. Rev. 86, 106511 (2021).
Wang, J. et al. Inspecting non-linear behavior of aggregated and disaggregated renewable and non-renewable energy consumption on GDP per capita in Pakistan. Energy Strategy Rev. 39, 100772 (2022).
Field, E. H. et al. The USGS 2023 conterminous US time‐independent earthquake rupture forecast. Bull. Seismol. Soc. Am. 114, 523–571 (2024).
UN Comtrade. International trade statistics. United Nations (2023).
Aguiar, A., Chepeliev, M., Corong, E. L., McDougall, R. & van der Mensbrugghe, D. The GTAP data base: version 10. J. Glob. Econ. Anal 4, 1–27 (2019).
Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi‐regional input‐output tables. J. Ind. Ecol. 22, 502–515 (2018).
Hiramatsu, T., Inoue, H. & Kato, Y. Estimation of interregional input–output table using hybrid algorithm of the RAS method and real-coded genetic algorithm. Transp. Res. E Logist. Transp. Rev. 95, 385–402 (2016).
Parikh, A. Forecasts of input-output matrices using the RAS method. Rev. Econ. Stat. 61, 477–481 (1979).
Rodrigues, R. & Linares, P. Electricity load level detail in computational general equilibrium – Part I – data and calibration. Energy Econ. 46, 258–266 (2014).
Wang, S. et al. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. Energy 254, 124224 (2022).
Majeau-Bettez, G., Hawkins, T. R. & Strømman, A. H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548–4554 (2011).
Mohr, M., Peters, J. F., Baumann, M. & Weil, M. Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes. J. Ind. Ecol. 24, 1310–1322 (2020).
Pradhan, B. K. & Ghosh, J. A computable general equilibrium (CGE) assessment of technological progress and carbon pricing in India’s green energy transition via furthering its renewable capacity. Energy Econ. 106, 105788 (2022).
Lofgren, H., Harris, R. L. & Robinson, S. A Standard Computable General Equilibrium (CGE) Model in GAMS (International Food Policy Research Institute, 2002).
Zhang, X., Qi, T., Ou, X. & Zhang, X. The role of multi-region integrated emissions trading scheme: a computable general equilibrium analysis. Appl. Energy 185, 1860–1868 (2017).
Babatunde, K. A., Begum, R. A. & Said, F. F. Application of computable general equilibrium (CGE) to climate change mitigation policy: a systematic review. Renew. Sustain. Energy Rev. 78, 61–71 (2017).
Guo, Z., Zhang, X., Zheng, Y. & Rao, R. Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors. Energy Econ. 45, 455–462 (2014).
Qi, S., Cheng, S., Tan, X., Feng, S. & Zhou, Q. Predicting China’s carbon price based on a multi-scale integrated model. Appl. Energy 324, 119784 (2022).
Fujimori, S., Oshiro, K., Shiraki, H. & Hasegawa, T. Energy transformation cost for the Japanese mid-century strategy. Nat. Commun. 10, 4737 (2019).
Combes, P.-P., Duranton, G. & Gobillon, L. The production function for housing: evidence from France. J. Political Econ. 129, 2766–2816 (2021).
Mayer, J., Dugan, A., Bachner, G. & Steininger, K. W. Is carbon pricing regressive? Insights from a recursive-dynamic CGE analysis with heterogeneous households for Austria. Energy Econ. 104, 105661 (2021).
Su, Q. et al. Water–energy–carbon nexus: greenhouse gas emissions from integrated urban drainage systems in China. Environ. Sci. Technol. 57, 2093–2104 (2023).
Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 16, 073005 (2021).
Lei, T. et al. Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature 622, 514–520 (2023).
Jones, M. W. et al. Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Sci. Data 8, 2 (2021).
Fleischmann, J. et al. Battery 2030: resilient, sustainable, and circular. McKinsey & Company https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circular (2023).
Liang, J. et al. Agricultural HANPP embodied in consumption: tracing pressure on ecosystems based on an MRIO analysis. Environ. Sci. Technol. 57, 13838–13850 (2023).
Xing, Z., Jiao, Z. & Wang, H. Carbon footprint and embodied carbon transfer at city level: a nested MRIO analysis of Central Plain urban agglomeration in China. Sustain. Cities Soc. 83, 103977 (2022).
Zhai, M. A circular economy approach for decarbonizing the lithium-ion battery supply chain [data set]. Zenodo https://doi.org/10.5281/zenodo.14841891 (2025).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn https://ggplot2.tidyverse.org (Springer, 2016).
Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R https://r-spatial.org/book/ (Chapman and Hall/CRC, 2023).
Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: draw geographical maps. R package version 3.4.3 https://CRAN.R-project.org/package=maps (2025).
Pedersen, T. patchwork: the composer of plots. R package version 1.3.2.9000 https://github.com/thomasp85/patchwork (2025).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
Massicotte, P. & South, A. rnaturalearth: world map data from Natural Earth. R package version 1.1.0.9000 https://docs.ropensci.org/rnaturalearth/ (2025).
Hijmans, R. geosphere: spherical trigonometry. R package version 1.5-20 https://github.com/rspatial/geosphere (2024).
Slowikowski, K. ggrepel: automatically position non-overlapping text labels with ‘ggplot2’. R package version 0.9.6.9999 https://github.com/slowkow/ggrepel (2025).
Zhai, M. A circular economy approach for decarbonizing the lithium-ion battery supply chain. Zenodo https://doi.org/10.5281/zenodo.14671353 (2025).