Thursday, October 23, 2025
No menu items!
HomeNatureDeterministic soliton microcombs in Cu-free photonic integrated circuits

Deterministic soliton microcombs in Cu-free photonic integrated circuits

  • Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    PubMed 

    Google Scholar
     

  • Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Brasch, V., Geiselmann, M., Pfeiffer, M. H. P. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24, 29312–29320 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206–212 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8, 50 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kao, K. C. & Hockham, G. A. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 113, 1151–1158 (1966).


    Google Scholar
     

  • Miya, T., Terunuma, Y., Hosaka, T. & Miyashita, T. Ultimate low-loss single-mode fibre at 1.55 μm. Electr. Lett. 15, 106–108 (1979).

    ADS 
    CAS 

    Google Scholar
     

  • Ohishi, Y., Mitachi, S. & Kanamori, T. Impurity absorption losses in the infrared region due to 3d transition elements in fluoride glass. Jpn. J. Appl. Phys. 20, L787 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • Mitachi, S., Terunuma, Y., Ohishi, Y. & Takahashi, S. Reduction of impurities in fluoride glass optical fiber. Jpn. J. Appl. Phys. 22, L537 (1983).

    ADS 

    Google Scholar
     

  • Nagayama, K., Kakui, M., Matsui, M., Saitoh, T. & Chigusa, Y. Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance. Electron. Lett. 38, 1 (2002).


    Google Scholar
     

  • Tamura, Y. et al. Lowest-ever 0.1419-dB/km loss optical fiber. In Proc. Optical Fiber Communication Conference Postdeadline Papers, Th5D–1 (Optica, 2017).

  • Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    ADS 

    Google Scholar
     

  • Sun, Y. et al. Applications of optical microcombs. Adv. Opt. Photon. 15, 86–175 (2023).


    Google Scholar
     

  • Lu, X. et al. Emerging integrated laser technologies in the visible and short near-infrared regimes. Nat. Photon. 18, 1010–1023 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Ye, Z., Fülöp, A., Helgason, Ó. B., Andrekson, P. A. & Torres-Company, V. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt. Lett. 44, 3326–3329 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photon. 6, 071101 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, X. et al. Efficient mass manufacturing of high-density, ultra-low-loss Si3N4 photonic integrated circuits. Optica 11, 1397–1407 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, P. et al. Ultra-broadband optical amplification using nonlinear integrated waveguides. Nature 640, 918–923 (2025).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. A fully hybrid integrated erbium-based laser. Nat. Photon. 18, 829–835 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 13, 3522 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corcoran, B., Mitchell, A., Morandotti, R., Oxenløwe, L. K. & Moss, D. J. Optical microcombs for ultrahigh-bandwidth communications. Nat. Photon. 19, 451–462 (2025).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Wildi, T., Brasch, V., Liu, J., Kippenberg, T. J. & Herr, T. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett. 44, 4447–4450 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng, H. et al. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons. APL Photon. 7, 066103 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Ji, Q.-X. et al. Dispersive-wave-agile optical frequency division. Nat. Photon. 19, 624–629 (2025).

    ADS 
    CAS 

    Google Scholar
     

  • Ji, Q.-X. et al. Multimodality integrated microresonators using the moiré speedup effect. Science 383, 1080–1083 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303–309 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfeiffer, M. H. P. et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, S., Zhang, Y., Hariri, A., Al-Hallak, A.-R. & Zhang, Z. Fabrication of ultra-low-loss, dispersion-engineered silicon nitride photonic integrated circuits via silicon hardmask etching. ACS Photon. 12, 1039–1046 (2024).

  • Myers, S. M., Seibt, M. & Schröter, W. Mechanisms of transition-metal gettering in silicon. J. Appl. Phys. 88, 3795–3819 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, A. Y. et al. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films. J. Appl. Phys. 120, 193103 (2016).

    ADS 

    Google Scholar
     

  • Inglese, A., Laine, H. S., Vähänissi, V. & Savin, H. Cu gettering by phosphorus-doped emitters in p-type silicon: Effect on light-induced degradation. AIP Adv. 8, 015112 (2018).

    ADS 

    Google Scholar
     

  • Liu, A. et al. Gettering of transition metals in high-performance multicrystalline silicon by silicon nitride films and phosphorus diffusion. J. Appl. Phys. 125, 043103 (2019).

    ADS 

    Google Scholar
     

  • Le, T. T. et al. Impurity gettering by silicon nitride films: kinetics, mechanisms, and simulation. ACS Appl. Energy Mater. 4, 10849–10856 (2021).

    CAS 

    Google Scholar
     

  • Kim, K.-S., Joo, Y.-C., Kim, K.-B. & Kwon, J.-Y. Extraction of Cu diffusivities in dielectric materials by numerical calculation and capacitance-voltage measurement. J. Appl. Phys. 100, 063517 (2006).

    ADS 

    Google Scholar
     

  • Ji, X. & Li, X. Deterministic soliton microcombs in Cu-free photonic integrated circuits. Zenodo https://doi.org/10.5281/zenodo.15773976 (2025).

  • Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments