Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).
Brasch, V., Geiselmann, M., Pfeiffer, M. H. P. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24, 29312–29320 (2016).
Zhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206–212 (2019).
Zhou, H. et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8, 50 (2019).
Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).
Kao, K. C. & Hockham, G. A. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 113, 1151–1158 (1966).
Miya, T., Terunuma, Y., Hosaka, T. & Miyashita, T. Ultimate low-loss single-mode fibre at 1.55 μm. Electr. Lett. 15, 106–108 (1979).
Ohishi, Y., Mitachi, S. & Kanamori, T. Impurity absorption losses in the infrared region due to 3d transition elements in fluoride glass. Jpn. J. Appl. Phys. 20, L787 (1981).
Mitachi, S., Terunuma, Y., Ohishi, Y. & Takahashi, S. Reduction of impurities in fluoride glass optical fiber. Jpn. J. Appl. Phys. 22, L537 (1983).
Nagayama, K., Kakui, M., Matsui, M., Saitoh, T. & Chigusa, Y. Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance. Electron. Lett. 38, 1 (2002).
Tamura, Y. et al. Lowest-ever 0.1419-dB/km loss optical fiber. In Proc. Optical Fiber Communication Conference Postdeadline Papers, Th5D–1 (Optica, 2017).
Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).
Sun, Y. et al. Applications of optical microcombs. Adv. Opt. Photon. 15, 86–175 (2023).
Lu, X. et al. Emerging integrated laser technologies in the visible and short near-infrared regimes. Nat. Photon. 18, 1010–1023 (2024).
Ye, Z., Fülöp, A., Helgason, Ó. B., Andrekson, P. A. & Torres-Company, V. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt. Lett. 44, 3326–3329 (2019).
Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photon. 6, 071101 (2021).
Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).
Ji, X. et al. Efficient mass manufacturing of high-density, ultra-low-loss Si3N4 photonic integrated circuits. Optica 11, 1397–1407 (2024).
Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).
Zhao, P. et al. Ultra-broadband optical amplification using nonlinear integrated waveguides. Nature 640, 918–923 (2025).
Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).
Liu, Y. et al. A fully hybrid integrated erbium-based laser. Nat. Photon. 18, 829–835 (2024).
Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).
Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 13, 3522 (2022).
Corcoran, B., Mitchell, A., Morandotti, R., Oxenløwe, L. K. & Moss, D. J. Optical microcombs for ultrahigh-bandwidth communications. Nat. Photon. 19, 451–462 (2025).
Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).
Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).
Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).
Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).
Wildi, T., Brasch, V., Liu, J., Kippenberg, T. J. & Herr, T. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett. 44, 4447–4450 (2019).
Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).
Weng, H. et al. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons. APL Photon. 7, 066103 (2022).
Ji, Q.-X. et al. Dispersive-wave-agile optical frequency division. Nat. Photon. 19, 624–629 (2025).
Ji, Q.-X. et al. Multimodality integrated microresonators using the moiré speedup effect. Science 383, 1080–1083 (2024).
Rowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303–309 (2022).
Pfeiffer, M. H. P. et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).
Liu, S., Zhang, Y., Hariri, A., Al-Hallak, A.-R. & Zhang, Z. Fabrication of ultra-low-loss, dispersion-engineered silicon nitride photonic integrated circuits via silicon hardmask etching. ACS Photon. 12, 1039–1046 (2024).
Myers, S. M., Seibt, M. & Schröter, W. Mechanisms of transition-metal gettering in silicon. J. Appl. Phys. 88, 3795–3819 (2000).
Liu, A. Y. et al. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films. J. Appl. Phys. 120, 193103 (2016).
Inglese, A., Laine, H. S., Vähänissi, V. & Savin, H. Cu gettering by phosphorus-doped emitters in p-type silicon: Effect on light-induced degradation. AIP Adv. 8, 015112 (2018).
Liu, A. et al. Gettering of transition metals in high-performance multicrystalline silicon by silicon nitride films and phosphorus diffusion. J. Appl. Phys. 125, 043103 (2019).
Le, T. T. et al. Impurity gettering by silicon nitride films: kinetics, mechanisms, and simulation. ACS Appl. Energy Mater. 4, 10849–10856 (2021).
Kim, K.-S., Joo, Y.-C., Kim, K.-B. & Kwon, J.-Y. Extraction of Cu diffusivities in dielectric materials by numerical calculation and capacitance-voltage measurement. J. Appl. Phys. 100, 063517 (2006).
Ji, X. & Li, X. Deterministic soliton microcombs in Cu-free photonic integrated circuits. Zenodo https://doi.org/10.5281/zenodo.15773976 (2025).
Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).