Thursday, October 23, 2025
No menu items!
HomeNatureNon-van der Waals superlattices of carbides and carbonitrides

Non-van der Waals superlattices of carbides and carbonitrides

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Z. et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat. Phys. 10, 743–747 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 609, 46–51 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Balan, A. P. et al. Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications. Mater. Today 58, 164–200 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Matthews, K., Zhang, T., Shuck, C. E., VahidMohammadi, A. & Gogotsi, Y. Guidelines for synthesis and processing of chemically stable two-dimensional V2CTx MXene. Chem. Mater. 34, 499–509 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Halim, J. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergmann, G. Quantitative analysis of weak localization in thin Mg films by magnetoresistance measurements. Phys. Rev. B 25, 2937–2939 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, M. et al. Efficient microwave absorption with Vn+1CnTx MXenes. Cell Rep. Phys. Sci. 3, 101073 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ying, M. et al. Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem. Int. Ed. 61, e202201323 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wan, S. et al. High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, V. A. et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 4, 830–834 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z., Gao, J., Zhang, G., Cheng, Y. & Zhang, Y.-W. From two-dimensional nano-sheets to roll-up structures: expanding the family of nanoscroll. Nanotechnology 28, 385704 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Trushin, M. & Castro Neto, A. H. Stability of a rolled-up conformation state for two-dimensional materials in aqueous solutions. Phys. Rev. Lett. 127, 156101 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments