Thursday, October 16, 2025
No menu items!
HomeNatureIntegrated lithium niobate photonics for sub-ångström snapshot spectroscopy

Integrated lithium niobate photonics for sub-ångström snapshot spectroscopy

  • Berné, O. et al. A far-ultraviolet–driven photoevaporation flow observed in a protoplanetary disk. Science 383, 988–992 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Climent, J. B., Guirado, J. C., Pérez-Torres, M., Marcaide, J. M. & Peña-Moñino, L. Evidence for a radiation belt around a brown dwarf. Science 381, 1120–1124 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Currie, T. et al. Direct imaging and astrometric detection of a gas giant planet orbiting an accelerating star. Science 380, 198–203 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • You, B. et al. Observations of a black hole X-ray binary indicate formation of a magnetically arrested disk. Science 381, 961–964 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts, O. J. et al. Rapid spectral variability of a giant flare from a magnetar in NGC 253. Nature 589, 207–210 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cutrale, F. et al. Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging. Nat. Methods 14, 149–152 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartczak, P. et al. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging. Opt. Rev. 24, 105–116 (2017).

    Article 

    Google Scholar
     

  • Dale, L. M. et al. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. Appl. Spectrosc. Rev. 48, 142–159 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dai, Y. et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 615, 280–284 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Aartsen, M. et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Akimov, D. et al. Observation of coherent elastic neutrino-nucleus scattering. Science 357, 1123–1126 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimble, R. A. et al. The on-orbit performance of the space telescope imaging spectrograph. Astrophys. J. 492, L83 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Smee, S. A. et al. The multi-object, fiber-fed spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. Astron. J. 146, 32 (2013).

  • Zhao, G., Zhao, Y.-H., Chu, Y.-Q., Jing, Y.-P. & Deng, L.-C. LAMOST spectral survey—An overview. Res. Astron. Astrophys. 12, 723 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Brady, D. J. Optical Imaging and Spectroscopy (Wiley, 2009).

  • Newman, J. A. et al. Spectroscopic needs for imaging dark energy experiments. Astropart. Phys. 63, 81–100 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, X. et al. A microspectrometer with dual-signal spectral reconstruction. Nat. Electron. 7, 984–990 (2024).

  • Redding, B. et al. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 746–751 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fan, Y. et al. Dispersion-assisted high-dimensional photodetector. Nature 630, 77–83 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tack, N., Lambrechts, A., Soussan, P. & Haspeslagh, L. A compact, high-speed and low-cost hyperspectral imager. In Proc. SPIE Conference Series, Silicon Photonics VII, Vol. 8266 (eds Kubby, J. & Reed, G. T.) 16 (SPIE, 2012).

  • Geelen B. et al. A tiny VIS-NIR snapshot multispectral camera. In Proc. SPIE Conference Series, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VIII, Vol. 9374 (eds van Freymann, G. et al.) 194–201 (SPIE, 2015).

  • Liu, S. et al. Super-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies. Nat. Photon. 18, 967–974 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yako, M. et al. Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Pérot filters. Nat. Photon. 17, 218–223 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiong, J. et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 9, 461–468 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Behmann, J. et al. Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors 18, 441 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon, D. S. et al. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans. Graph. 38, 117 (2019).

    Article 

    Google Scholar
     

  • Yang, Z. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Faraji-Dana, M. et al. Hyperspectral imager with folded metasurface optics. ACS Photonics 6, 2161–2167 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yao, C. et al. Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics. Light: Sci. Appl. 12, 156 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y., Lu, L., Saragadam, V. & Kelly, K. F. A compressive hyperspectral video imaging system using a single-pixel detector. Nat. Commun. 15, 1456 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, X., Brady, D. J. & Katsaggelos, A. K. Snapshot compressive imaging: theory, algorithms, and applications. IEEE Trans. Signal Process. 69, 5406–5418 (2021).


    Google Scholar
     

  • Shi, Z. et al. Learned multi-aperture color-coded optics for snapshot hyperspectral imaging. ACM Trans. Graph. 43, 208 (2024).

    Article 

    Google Scholar
     

  • Lin, X., Wetzstein, G., Liu, Y. & Dai, Q. Dual-coded compressive hyper-spectral imaging. Opt. Lett. 39, 2044–2047 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light: Sci. Appl. 10, 88 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Handheld snapshot multi-spectral camera at tens-of-megapixel resolution. Nat. Commun. 14, 5043 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. An integrated imaging sensor for aberration-corrected 3D photography. Nature 612, 62–71 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, K. et al. Masked autoencoders are scalable vision learners. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 15979–15988 (IEEE, 2021).

  • Yao, Z., Liu, S., Yuan, X. & Fang, L. SPECAT: spatial-spectral cumulative-attention transformer for high-resolution hyperspectral image reconstruction. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 25368–25377 (IEEE, 2024).

  • Yuan, X. et al. A modular hierarchical array camera. Light: Sci. Appl. 10, 37 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).

    Article 

    Google Scholar
     

  • Srinivas, M. & Patnaik, L. M. Genetic algorithms: a survey. Computer 27, 17–26 (1994).

    Article 

    Google Scholar
     

  • Arad, Y. & Ben-Shahar, O. Sparse recovery of hyperspectral signal from natural RGB images. In Proc. European Conference on Computer Vision (eds Leibe, B. et al.) 19–34 (Springer, 2016).

  • Arad, M., Ben-Zvi, Y., Ben-Shahar, O. & Hel-Or, H. NTIRE 2022 spectral recovery challenge and data set. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 863–881 (IEEE, 2022).

  • Abdurro’uf, et al.The 17th Data Release of the Sloan Digital Sky Surveys: SDSS-IV. Astrophys. J. Suppl. Ser. 259, 35 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yao, Z. Data used in ‘Integrated lithium niobate photonics for sub-angstrom snapshot spectroscopy’. Zenodo https://doi.org/10.5281/zenodo.16936676 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments