Wednesday, October 15, 2025
No menu items!
HomeNatureA conserved H3K14ub-driven H3K9me3 for chromatin compartmentalization

A conserved H3K14ub-driven H3K9me3 for chromatin compartmentalization

  • Grewal, S. I. S. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol. Cell 83, 1767–1785 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ghosh, R. P. & Meyer, B. J. Spatial organization of chromatin: emergence of chromatin structure during development. Annu. Rev. Cell Dev. Biol. 37, 199–232 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Saksouk, N., Simboeck, E. & Dejardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenet. Chromatin 8, 3 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34, 265–288 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Penagos-Puig, A. & Furlan-Magaril, M. Heterochromatin as an important driver of genome organization. Front. Cell Dev. Biol. 8, 579137 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P., Li, W. & Li, G. Structures and functions of chromatin fibers. Annu. Rev. Biophys. 50, 95–116 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, R. et al. Targeting pericentric non-consecutive motifs for heterochromatin initiation. Nature 631, 678–685 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, R., Wang, X. & Moazed, D. Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation. Nature 558, 615–619 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Montavon, T. et al. Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nat. Commun. 12, 4359 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Lomberk, G., Wallrath, L. & Urrutia, R. The heterochromatin protein 1 family. Genome Biol. 7, 228 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zenk, F. et al. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 593, 289–293 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hong, E. J., Villen, J., Gerace, E. L., Gygi, S. P. & Moazed, D. A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol. 2, 106–111 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Horn, P. J., Bastie, J. N. & Peterson, C. L. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev. 19, 1705–1714 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jia, S., Kobayashi, R. & Grewal, S. I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat. Cell Biol. 7, 1007–1013 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Oya, E. et al. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep. 20, e48111 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stirpe, A. et al. SUV39 SET domains mediate crosstalk of heterochromatic histone marks. eLife 10, e62682 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cao, X. et al. Histone H4K20 demethylation by two hHR23 proteins. Cell Rep. 30, 4152–4164 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, S. Y., Baxter, E. M. & Van Doren, M. Phf7 controls male sex determination in the Drosophila germline. Dev. Cell 22, 1041–1051 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim, C. R. et al. PHF7 modulates BRDT stability and histone-to-protamine exchange during spermiogenesis. Cell Rep. 32, 107950 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brooks, W. S. et al. G2E3 is a dual function ubiquitin ligase required for early embryonic development. J. Biol. Chem. 283, 22304–22315 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brooks, W. S., Banerjee, S. & Crawford, D. F. G2E3 is a nucleo-cytoplasmic shuttling protein with DNA damage responsive localization. Exp. Cell. Res. 313, 665–676 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Crawford, D. F. & Piwnica-Worms, H. The G2 DNA damage checkpoint delays expression of genes encoding mitotic regulators. J. Biol. Chem. 276, 37166–37177 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Aagaard, L., Schmid, M., Warburton, P. & Jenuwein, T. Mitotic phosphorylation of SUV39H1, a novel component of active centromeres, coincides with transient accumulation at mammalian centromeres. J. Cell Sci. 113, 817–829 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, X. & Fu, X. D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Martienssen, R. & Moazed, D. RNAi and heterochromatin assembly. Cold Spring Harbor Perspect. Biol. 7, a019323 (2015).

    Article 

    Google Scholar
     

  • Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, W. L. et al. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 6, e25299 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velazquez Camacho, O. et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 6, e25293 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirai, A. et al. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife 6, e25317 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Sady, B., Madhani, H. D. & Narlikar, G. J. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol. Cell 51, 80–91 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, K., Mosch, K., Fischle, W. & Grewal, S. I. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Horita, D. A., Ivanova, A. V., Altieri, A. S., Klar, A. J. S. & Byrd, R. A. Solution structure, domain features, and structural implications of mutants of the chromo domain from the fission yeast histone methyltransferase Clr4. J. Mol. Biol. 307, 861–870 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jacobs, S. A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Nielsen, P. R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107 (2002).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, T. et al. Crystal structure of the human SUV39H1 chromodomain and its recognition of histone H3K9me2/3. PLoS ONE 7, e52977 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu, W. et al. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591, 317–321 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Khanduja, J. S. et al. RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly. Cell 187, 3262–3283 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, C., Zhao, J. & Li, G. Preparation and characterization of chromatin templates for histone methylation assays. Methods Mol. Biol. 2529, 91–107 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, J. et al. USP7 negatively controls global DNA methylation by attenuating ubiquitinated histone-dependent DNMT1 recruitment. Cell Discov. 6, 58 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kozakov, D. et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12, 255–278 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abad, P. C. et al. NuMA influences higher order chromatin organization in human mammary epithelium. Mol. Biol. Cell 18, 348–361 (2007).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–U354 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xie, M. C. et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat. Genet. 45, 836–841 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments