Wednesday, October 8, 2025
No menu items!
HomeNatureProgrammable on-chip nonlinear photonics | Nature

Programmable on-chip nonlinear photonics | Nature

  • Boyd, R. W. Nonlinear Optics (Academic, 2008).

  • Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Dutt, A., Mohanty, A., Gaeta, A. L. & Lipson, M. Nonlinear and quantum photonics using integrated optical materials. Nat. Rev. Mater. 9, 321–346 (2024).

    Article 

    Google Scholar
     

  • Ansari, V., Donohue, J. M., Brecht, B. & Silberhorn, C. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica 5, 534–550 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics 11, 200–206 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Heydari, D. et al. Degenerate optical parametric amplification in CMOS silicon. Optica 10, 430–437 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 16, 134–141 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15, 131–136 (2020).

    Article 

    Google Scholar
     

  • Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics 13, 494–499 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, B. et al. Down-converted photon pairs in a high-Q silicon nitride microresonator. Nature 639, 922–927 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).

    Article 

    Google Scholar
     

  • Lu, H.-H., Liscidini, M., Gaeta, A. L., Weiner, A. M. & Lukens, J. M. Frequency-bin photonic quantum information. Optica 10, 1655–1671 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Oliver, R. et al. N-way parametric frequency beamsplitter for quantum photonics. Phys. Rev. Res. 7, 023108 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2013).

    Article 

    Google Scholar
     

  • McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).

    Article 

    Google Scholar
     

  • Saxena, M., Eluru, G. & Gorthi, S. S. Structured illumination microscopy. Adv. Opt. Photonics 7, 241–275 (2015).

    Article 

    Google Scholar
     

  • Heist, S. et al. 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light. Opt. Express 26, 23366–23379 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Metasurface-empowered five-dimensional imaging with structured light. ACS Photonics 11, 3898–3906 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hum, D. S. & Fejer, M. M. Quasi-phasematching. C. R. Phys. 8, 180–198 (2006).

    Article 

    Google Scholar
     

  • Hu, X., Xu, P. & Zhu, S. Engineered quasi-phase-matching for laser techniques. Photonics Res. 1, 171–185 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B.-Q., Zhang, C., Hu, C.-Y., Liu, R.-J. & Li, Z.-Y. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Phys. Rev. Lett. 115, 083902 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, S.-n, Zhu, Y.-y & Ming, N.-b Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Imeshev, G. et al. Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings. Opt. Lett. 23, 864–866 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3, 395–398 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dolev, I., Ellenbogen, T. & Arie, A. Switching the acceleration direction of Airy beams by a nonlinear optical process. Opt. Lett. 35, 1581–1583 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Fang, B., Li, H., Zhu, S. & Li, T. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photonics Res. 8, 1296–1300 (2020).

    Article 

    Google Scholar
     

  • Yoo, S. J. B. et al. Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding. Appl. Phys. Lett. 68, 2609–2611 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Boes, A. et al. Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. J. Phys. Photonics 3, 012008 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P.-K. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol. 19, 44–50 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Maker, P. D. & Terhune, R. W. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. 137, A801 (1965).

    Article 

    Google Scholar
     

  • Oudar, J. L. & Le Person, H. Second-order polarizabilities of some aromatic molecules. Opt. Commun. 15, 258–262 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Lüpke, G. Characterization of semiconductor interfaces by second-harmonic generation. Surf. Sci. Rep. 35, 75–161 (1999).

    Article 

    Google Scholar
     

  • Zhao, X. et al. Nontrivial phase matching in helielectric polarization helices: universal phase matching theory, validation, and electric switching. Proc. Natl Acad. Sci. 119, e2205636119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sultanov, V. et al. Tunable entangled photon-pair generation in a liquid crystal. Nature 631, 294–299 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onodera, T. et al. Scaling on-chip photonic neural processors using arbitrarily programmable wave propagation. Preprint at https://arxiv.org/abs/2402.17750 (2024).

  • Wu, T., Menarini, M., Gao, Z. & Feng, L. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics 17, 710–716 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Margules, P., Moses, J., Suchowski, H. & Porat, G. Ultrafast adiabatic frequency conversion. J. Phys. Photonics 3, 022011 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shiloh, R. & Arie, A. Spectral and temporal holograms with nonlinear optics. Opt. Lett. 37, 3591–3593 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Leshem, A., Shiloh, R. & Arie, A. Experimental realization of spectral shaping using nonlinear optical holograms. Opt. Lett. 39, 5370–5373 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 5, 210174 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Efremidis, N. K., Chen, Z., Segev, M. & Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686–701 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries. Laser Photonics Rev. 17, 2200544 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics 6, 071101 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanagimoto, R. et al. Data repository for “Programmable on-chip nonlinear photonics”. Zenodo https://doi.org/10.5281/zenodo.17074707 (2025).

  • Bolla, L. EMpy – Electromagnetic Python. GitHub https://github.com/lbolla/EMpy (2017).

  • RELATED ARTICLES

    Most Popular

    Recent Comments