Monday, October 6, 2025
No menu items!
HomeNatureSignal amplification in a solid-state sensor through asymmetric many-body echo

Signal amplification in a solid-state sensor through asymmetric many-body echo

  • Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Casola, F., Sar, T. V. D. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 024105–13 (2018).

    Article 

    Google Scholar
     

  • Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S. et al. Nanoscale magnetometry with NV centers in diamond. MRS Bull. 38, 155–161 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C. & Chang, H.-C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Quantum metrology with strongly interacting spin systems. Phys. Rev. X 10, 031003 (2020).

    CAS 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. et al. Robust dynamic Hamiltonian engineering of many-body spin systems. Phys. Rev. X 10, 031002 (2020).

    CAS 

    Google Scholar
     

  • Macrì, T., Smerzi, A. & Pezzè, L. Loschmidt echo for quantum metrology. Phys. Rev. A 94, 010102 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Nature 621, 728–733 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hines, J. A. et al. Spin squeezing by Rydberg dressing in an array of atomic ensembles. Phys. Rev. Lett. 131, 063401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 621, 734–739 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Franke, J. et al. Quantum-enhanced sensing on optical transitions through finite-range interactions. Nature 621, 740–745 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K. et al. Probing dynamical phase transitions with a superconducting quantum simulator. Sci. Adv. 6, 4935–4952 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bao, H. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koppenhöfer, M., Groszkowski, P., Lau, H.-K. & Clerk, A. A.Dissipative superradiant spin amplifier for enhanced quantum sensing. PRX Quantum 3, 030330 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shields, B. J., Unterreithmeier, Q. P., Leon, N. P.de, Park, H. & Lukin, M. D.Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 18, 925–930 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Improving metrology with quantum scrambling. Science 380, 1381–1384 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hughes, L. B. et al. Two-dimensional spin systems in PECVD-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11, 021101 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hughes, L. B. et al. Strongly interacting, two-dimensional, dipolar spin ensembles in (111)-oriented diamond. Phys. Rev. X 15, 021035 (2025).

    CAS 

    Google Scholar
     

  • Tetienne, J. P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

    Article 

    Google Scholar
     

  • Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics (Cambridge Univ. Press, 2020).

  • Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • Miller, C. et al. Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules. Nature 633, 332–337 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. C., Xu, Z. F., Jin, G. R. & You, L. Spin squeezing: transforming one-axis twisting into two-axis twisting. Phys. Rev. Lett. 107, 013601 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, L. S. et al. Controlling local thermalization dynamics in a Floquet-engineered dipolar ensemble. Phys. Rev. Lett. 130, 210403 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulte, M., Martínez-Lahuerta, V. J., Scharnagl, M. S. & Hammerer, K. Ramsey interferometry with generalized one-axis twisting echoes. Quantum 4, 268 (2020).

    Article 

    Google Scholar
     

  • Braemer, A., Franz, T., Weidemüller, M. & Gärttner, M. Pair localization in dipolar systems with tunable positional disorder. Phys. Rev. B 106, 134212 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Franz, T. et al. Emergent pair localization in a many-body quantum spin system. Preprint at https://arxiv.org/abs/2207.14216 (2022).

  • Block, M. et al. Scalable spin squeezing from finite-temperature easy-plane magnetism. Nat. Phys. 20, 1575–1581 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwasigroch, M. P. & Cooper, N. R. Synchronization transition in dipole-coupled two-level systems with positional disorder. Phys. Rev. A 96, 053610 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y.-C. et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica 6, 662–667 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arunkumar, N. et al. Quantum logic enhanced sensing in solid-state spin ensembles. Phys. Rev. Lett. 131, 100801 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. et al. Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proc. Natl Acad. Sci. USA 117, 14636–14641 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Hu, Z. & Liu, Y. C. Fast generation of GHZ-like states using collective-spin XYZ model. Phys. Rev. Lett. 132, 113402 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilitewski, T. et al. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wurtz, J., Polkovnikov, A. & Sels, D. Cluster truncated Wigner approximation in strongly interacting systems. Ann. Phys. 395, 341–365 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Braemer, A., Vahedi, J. & Gärttner, M. Cluster truncated Wigner approximation for bond-disordered Heisenberg spin models. Phys. Rev. B 110, 054204 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Choi, J. et al. Depolarization dynamics in a strongly interacting solid-state spin ensemble. Phys. Rev. Lett. 118, 093601 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond. Photon. Res. 8, 1289–1295 (2020).

    Article 

    Google Scholar
     

  • Vannimenus, J. & Toulouse, G. Theory of the frustration effect. II. Ising spins on a square lattice. J. Phys. C Solid State Phys. 10, L537 (1977).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments