Monday, October 6, 2025
No menu items!
HomeNatureKirigami-inspired parachutes with programmable reconfiguration

Kirigami-inspired parachutes with programmable reconfiguration

  • Zhai, Z., Wu, L. & Jiang, H. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, 041319 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jin, L. & Yang, S. Engineering kirigami frameworks toward real-world applications. Adv. Mater. 36, 2308560 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tao, J., Khosravi, H., Deshpande, V. & Li, S. Engineering by cuts: how kirigami principle enables unique mechanical properties and functionalities. Adv. Sci. 10, 2204733 (2023).

    Article 

    Google Scholar
     

  • Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Branyan, C., Rafsanjani, A., Bertoldi, K., Hatton, R. L. & Mengüç, Y. Curvilinear kirigami skins let soft bending actuators slither faster. Front. Robot. AI 9, 872007 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dias, M. A. et al. Kirigami actuators. Soft Matter 13, 9087–9092 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Vella, K. & Holmes, D. P. Grasping with kirigami shells. Sci. Robot. 6, eabd6426 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Forte, A. E., Melancon, D., Zanati, M., De Giorgi, M. & Bertoldi, K. Chiral mechanical metamaterials for tunable optical transmittance. Adv. Funct. Mater. 33, 2214897 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Compact reconfigurable kirigami. Phys. Rev. Res. 3, 043030 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dudte, L. H., Choi, G. P. T., Becker, K. P. & Mahadevan, L. An additive framework for kirigami design. Nat. Comput. Sci. 3, 443–454 (2023).

  • Isobe, M. & Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 6, 24758 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Dias, M. A. & Holmes, D. P.Multistable kirigami for tunable architected materials. Phys. Rev. Mater. 2, 110601 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Isobe, M. & Okumura, K. Continuity and discontinuity of kirigami’s high-extensibility transition: a statistical-physics viewpoint. Phys. Rev. Res. 1, 022001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cho, H. & Kim, D.-N. Controlling the stiffness of bistable kirigami surfaces via spatially varying hinges. Mater. Des. 231, 112053 (2023).

    Article 

    Google Scholar
     

  • Tani, M. et al. Curvy cuts: programming axisymmetric kirigami shapes. Extreme Mech. Lett. 71, 102195 (2024).

    Article 

    Google Scholar
     

  • Lamoureux, D., Ramananarivo, SD., Melancon, & Gosselin, F. P. Simulating flow-induced reconfiguration by coupling corotational plate finite elements with a simplified pressure drag. Extreme Mech. Lett. 74, 102271 (2024).

    Article 

    Google Scholar
     

  • White, F. M. & Wolf, D. F. A theory of three-dimensional parachute dynamic stability. J. Aircr. 5, 86–92 (1968).

    Article 

    Google Scholar
     

  • Marzin, T., Le Hay, K., de Langre, E. & Ramananarivo, S. Flow-induced deformation of kirigami sheets. Phys. Rev. Fluids 7, 023906 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Carleton, A. G. & Modarres-Sadeghi, Y. Kirigami sheets in fluid flow. Extreme Mech. Lett. 71, 102198 (2024).

  • Gamble, L., Lamoureux, A. & Shtein, M. Multifunctional composite kirigami skins for aerodynamic control. Appl. Phys. Lett. 117, 254105 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, J. et al. Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat. Commun. 12, 5484 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, X. et al. Dynamic kirigami structures for wake flow control behind a circular cylinder. Phys. Fluids 35, 011707 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vogel, S. Drag and reconfiguration of broad leaves in high winds. J. Exp. Bot. 40, 941–948 (1989).

    Article 

    Google Scholar
     

  • Alben, S., Shelley, M. & Zhang, J. Drag reduction through self-similar bending of a flexible body. Nature 420, 479–481 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schouveiler, L. & Boudaoud, A. The rolling up of sheets in a steady flow. J. Fluid Mech. 563, 71–80 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Gosselin, F., de Langre, E. & Machado-Almeida, B. A. Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319–341 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • De Langre, E., Gutierrez, A. & Cossé, J. On the scaling of drag reduction by reconfiguration in plants. C. R. Mec. 340, 35–40 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gosselin, F. P. Mechanics of a plant in fluid flow. J. Exp. Bot. 70, 3533–3548 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y. L., Pezzulla, M. & Reis, P. M. Fluid–structure interactions of bristled wings: the trade-off between weight and drag. J. R. Soc. Interface 20, 20230266 (2023).

  • Zhang, X. & Nepf, H. Flow‐induced reconfiguration of aquatic plants, including the impact of leaf sheltering. Limnol. Oceanogr. 65, 2697–2712 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 60, 46–61 (2022).

    Article 

    Google Scholar
     

  • Schouveiler, L. & Eloy, C. Flow-induced draping. Phys. Rev. Lett. 111, 064301 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gomez, M., Moulton, D. E. & Vella, D.Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett. 119, 144502 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Towards energy harvesting through flow-induced snap-through oscillations. Int. J. Mech. Sci. 254, 108428 (2023).

    Article 

    Google Scholar
     

  • Minami, S. & Azuma, A. Various flying modes of wind-dispersal seeds. J. Theor. Biol. 225, 1–14 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Biviano, M. D. & Jensen, K. H. Settling aerodynamics is a driver of symmetry in deciduous tree leaves. J. R. Soc. Interface 22, 20240654 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafsanjani, A. & Bertoldi, K. Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hua, R.-N., Zhu, L. & Lu, X.-Y. Dynamics of fluid flow over a circular flexible plate. J. Fluid Mech. 759, 56–72 (2014).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. Tumbling cards. Phys. Fluids 11, 1–3 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Auguste, F., Magnaudet, J. & Fabre, D. Falling styles of disks. J. Fluid Mech. 719, 388–405 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. & Liu, Z. Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics 7, 1637–1650 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Y. et al. Geometric design classification of kirigami-inspired metastructures and metamaterials. Structures 33, 3633–3643 (2021).

    Article 

    Google Scholar
     

  • Guttag, M., Karimi, H. H., Falcón, C. & Reis, P. M. Aeroelastic deformation of a perforated strip. Phys. Rev. Fluids 3, 014003 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pratap, M., Agrawal, A. K. & Kumar, S. Design and selection criteria of main parachute for re entry space payload. Def. Sci. J. 69, 531–537 (2019).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments