Monday, October 6, 2025
No menu items!
HomeNatureConnecting chemical and protein sequence space to predict biocatalytic reactions

Connecting chemical and protein sequence space to predict biocatalytic reactions

  • Li, J., Amatuni, A. & Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol. 55, 111–118 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romero, E. et al. Enzymatic late-stage modifications: better late than never. Angew. Chem. Int. Ed. 60, 16824–16855 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bayer, T., Wu, S., Snajdrova, R., Baldenius, K. & Bornscheuer, U. T. An update: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 64, e202505976 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Marshall, J. R., Mangas-Sanchez, J. & Turner, N. J. Expanding the synthetic scope of biocatalysis by enzyme discovery and protein engineering. Tetrahedron 82, 131926 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Li, F.-Z. & Arnold, F. H. Opportunities and challenges for machine learning-assisted enzyme engineering. ACS Cent. Sci. 10, 226–241 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 46 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Buller, R. et al. From nature to industry: harnessing enzymes for biocatalysis. Science 382, eadh8615 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garzón-Posse, F., Becerra-Figueroa, L., Hernández-Arias, J. & Gamba-Sánchez, D. Whole cells as biocatalysts in organic transformations. Molecules 23, 1265 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tibrewal, N. & Tang, Y. Biocatalysts for natural product biosynthesis. Annu. Rev. Chem. Biomol. Eng. 5, 347–366 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roiban, G.-D. et al. Development of an enzymatic process for the production of (R)-2-butyl-2-ethyloxirane. Org. Process Res. Dev. 21, 1302–1310 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tobin, P. H., Richards, D. H., Callender, R. A. & Wilson, C. J. Protein engineering: a new frontier for biological therapeutics. Curr. Drug. Metab. 15, 743–756 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novick, S. J. et al. Engineering an amine transaminase for the efficient production of a chiral sacubitril precursor. ACS Catal. 11, 3762–3770 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, T. et al. Enzyme function prediction using contrastive learning. Science 379, 1358–1363 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hon, J. et al. EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucleic Acids Res. 48, W104–W109 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnoes, A. M., Brown, S. D., Dodevski, I. & Babbitt, P. C. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput. Biol. 5, e1000605 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, D. E. et al. Exploring nitrilase sequence space for enantioselective catalysis. Appl. Environ. Microbiol. 70, 2429–2436 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahler, D., Badalassi, F., Crotti, P. & Reymond, J.-L. Enzyme fingerprints by fluorogenic and chromogenic substrate arrays. Angew. Chem. Int. Ed. 40, 4457–4460 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fansher, D. J., Besna, J. N., Fendri, A. & Pelletier, J. N. Choose your own adventure: a comprehensive database of reactions catalyzed by cytochrome P450 BM3 variants. ACS Catal. 14, 5560–5592 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, E. J. et al. Machine-directed evolution of an imine reductase for activity and stereoselectivity. ACS Catal. 11, 12433–12445 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ao, Y.-F. et al. Structure- and data-driven protein engineering of transaminases for improving activity and stereoselectivity. Angew. Chem. Int. Ed. 62, e202301660 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Supekar, S. et al. A machine learning-guided approach to navigate the substrate activity scope of galactose oxidase: application in the conversion of pharmaceutically relevant bulky secondary alcohols. ACS Catal. 14, 17233–17243 (2024).

    Article 
    CAS 

    Google Scholar
     

  • King, B. R., Sumida, K. H., Caruso, J. L., Baker, D. & Zalatan, J. G. Computational stabilization of a non-heme iron enzyme enables efficient evolution of new function. Angew. Chem. Int. Ed. 64, e202414705 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Mou, Z. et al. Machine learning-based prediction of enzyme substrate scope: application to bacterial nitrilases. Proteins 89, 336–347 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, M. et al. Functional and informatics analysis enables glycosyltransferase activity prediction. Nat. Chem. Biol. 14, 1109–1117 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroll, A., Ranjan, S., Engqvist, M. K. M. & Lercher, M. J. A general model to predict small molecule substrates of enzymes based on machine and deep learning. Nat. Commun. 14, 2787 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldman, S., Das, R., Yang, K. K. & Coley, C. W. Machine learning modeling of family wide enzyme-substrate specificity screens. PLoS Comput. Biol. 18, e1009853 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X., Quinn, D., Moody, T. S. & Huang, M. ALDELE: all-purpose deep learning toolkits for predicting the biocatalytic activities of enzymes. J. Chem. Inf. Model. 64, 3123–3139 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busch, F., Brummund, J., Calderini, E., Schürmann, M. & Kourist, R. Cofactor generation cascade for α-ketoglutarate and Fe(II)-dependent dioxygenases. ACS Sustain. Chem. Eng. 8, 8604–8612 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwick, C. R. & Renata, H. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat. Prod. Rep. 37, 1065–1079 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, S. S., Naowarojna, N., Cheng, R., Liu, X. & Liu, P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat. Prod. Rep. 35, 792–837 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hausinger, R. P. Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 21–68 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McLean, K. J., Luciakova, D., Belcher, J., Tee, K. L. & Munro, A. W. Biological diversity of cytochrome P450 redox partner systems. Adv. Exp. Med. Biol. 851, 299–317 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schofield, C. J. & Zhang, Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol. 9, 722–731 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seide, S. et al. From enzyme to preparative cascade reactions with immobilized enzymes: tuning Fe(II)/α-ketoglutarate-dependent lysine hydroxylases for application in biotransformations. Catalysts 12, 354 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hegg, E. L. & Que, L. Jr The 2-His-1-carboxylate facial triad — an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem. 250, 625–629 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher, B. F., Snodgrass, H. M., Jones, K. A., Andorfer, M. C. & Lewis, J. C. Site-selective C–H halogenation using flavin-dependent halogenases identified via family-wide activity profiling. ACS Cent. Sci. 5, 1844–1856 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atkinson, H. J., Morris, J. H., Ferrin, T. E. & Babbitt, P. C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One 4, e4345 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Copp, J. N., Akiva, E., Babbitt, P. C. & Tokuriki, N. Revealing unexplored sequence-function space using sequence similarity networks. Biochemistry 57, 4651–4662 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pyser, J. B. et al. Stereodivergent, chemoenzymatic synthesis of azaphilone natural products. J. Am. Chem. Soc. 141, 18551–18559 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lima, S. T. et al. A widely distributed biosynthetic cassette is responsible for diverse plant side chain cross-linked cyclopeptides. Angew. Chem. Int. Ed. 62, e202218082 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ju, S. et al. A biocatalytic platform for asymmetric alkylation of α-keto acids by mining and engineering of methyltransferases. Nat. Commun. 14, 5704 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacot-Descombes, L., Turcani, L. & Jorner, K. morfeus (computer software). https://github.com/digital-chemistry-laboratory/morfeus (accessed 29 August 2025).

  • Ropp, P. J., Kaminsky, J. C., Yablonski, S. & Durrant, J. D. Dimorphite-DL: an open-source program for enumerating the ionization states of drug-like small molecules. J. Cheminform. 11, 14 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hastie, T., Tibshirani, R. & Friedman, J. in The Elements of Statistical Learning: Data Mining, Inference, and Prediction 605–624 (Springer, 2009).

  • Lyzhin, I., Ustimenko, A., Gulin, A. & Prokhorenkova, L. Which tricks are important for learning to rank? Proc. 40th Intl Conf. Machine Learning (ICML 2023), PMLR 202, 23264–23278 (2023).

  • Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 54, 1937–1967 (2021).

    Article 

    Google Scholar
     

  • Kerkovius, J. K. et al. A pyridine dearomatization approach to the matrine-type lupin alkaloids. J. Am. Chem. Soc. 144, 15938–15943 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H., Zhao, J. & Renata, H. Discovery, characterization and synthetic application of a promiscuous nonheme iron biocatalyst with dual hydroxylase/desaturase activity. Angew. Chem. Int. Ed. 63, e202409143 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bunno, R., Awakawa, T., Mori, T. & Abe, I. Aziridine formation by a FeII/α-ketoglutarate dependent oxygenase and 2-aminoisobutyrate biosynthesis in fungi. Angew. Chem. Int. Ed. 60, 15827–15831 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Paton, A. E. et al. Connecting chemical and protein sequence space to predict biocatalytic reactions (v0.1). Zenodo https://doi.org/10.5281/zenodo.16779318 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments