Friday, September 26, 2025
No menu items!
HomeNatureElectrostatic-repulsion-based transfer of van der Waals materials

Electrostatic-repulsion-based transfer of van der Waals materials

  • Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pal, A. et al. Three-dimensional transistors with two-dimensional semiconductors for future CMOS scaling. Nat. Electron. 7, 1147–1157 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. Gate-driven band modulation hyperdoping for high-performance p-type 2D semiconductor transistors. Science 388, 1183–1188 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, J.-H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. Y., Ju, X., Ang, K. W. & Chi, D. Van der Waals layer transfer of 2D materials for monolithic 3D electronic system integration: review and outlook. ACS Nano 17, 1831–1844 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, H.-W., Hu, Z., Liu, Z.-B. & Tian, J.-G. Stacking of 2D materials. Adv. Funct. Mater. 31, 2007810 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Watson, A. J., Lu, W., Guimarães, M. H. D. & Stöhr, M. Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Mater. 8, 032001 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agmo Hernández, V. An overview of surface forces and the DLVO theory. ChemTexts 9, 10 (2023).

    Article 

    Google Scholar
     

  • Itano, M., Kern, F. W., Miyashita, M. & Ohmi, T. Particle removal from silicon wafer surface in wet cleaning process. IEEE Trans. Semicond. Manuf. 6, 258–267 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

  • Butt, H.-J. & Kappl, M. Surface and Interfacial Forces 2nd edn (Wiley, 2018).

  • Muneer, R., Rehan Hashmet, M. & Pourafshary, P. Fine migration control in sandstones: surface force analysis and application of DLVO theory. ACS Omega 5, 31624–31639 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S. et al. Fabrication of ultrathin MoS2 nanosheets and application on adsorption of organic pollutants and heavy metals. Processes 8, 504 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Salomão, R. & Brandi, J. Filamentous alumina–chitosan porous structures produced by gelcasting. Ceram. Int. 39, 7751–7757 (2013).

    Article 

    Google Scholar
     

  • Huang, C.-J., Wang, L.-C., Liu, C.-Y., Chiang, A. S. T. & Chang, Y.-C. Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties. Biointerphases 9, 029010 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuccaro, L., Krieg, J., Desideri, A., Kern, K. & Balasubramanian, K. Tuning the isoelectric point of graphene by electrochemical functionalization. Sci. Rep. 5, 11794 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefèvre, G. et al. Determination of isoelectric points of metals and metallic alloys by adhesion of latex particles. J. Colloid Interface Sci. 337, 449–455 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiong, C. & Tu, W. Synthesis of water-dispersible boron nitride nanoparticles. Eur. J. Inorg. Chem. 2014, 3010–3015 (2014).

    Article 
    CAS 

    Google Scholar
     

  • McPhail, M. R., Sells, J. A., He, Z. & Chusuei, C. C. Charging nanowalls: adjusting the carbon nanotube isoelectric point via surface functionalization. J. Phys. Chem. C 113, 14102–14109 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kallay, N., Torbic, Z., Golic, M. & Matijevic, E. Determination of the isoelectric points of several metals by an adhesion method. J. Phys. Chem. 95, 7028–7032 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Z., Rozyyev, V., Mane, A. U., Elam, J. W. & Darling, S. B. Surface zeta potential of ALD-grown metal-oxide films. Langmuir 37, 11618–11624 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bišćan, J., Kosec, M. & Kallay, N. The isoelectric conditions of the constituents of the complex oxide Pb(Zr,Ti)O3. Colloids Surf. A Physicochem. Eng. Asp. 79, 217–226 (1993).

    Article 

    Google Scholar
     

  • Bišćan, J., Kallay, N. & Smolić, T. Determination of iso-electric point of silicon nitride by adhesion method. Colloids Surf. A Physicochem. Eng. Asp. 165, 115–123 (2000).

    Article 

    Google Scholar
     

  • Franks, G. V. & Meagher, L. The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids Surf. A Physicochem. Eng. Asp. 214, 99–110 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, M., Salvador, P. A. & Rohrer, G. S. Influence of pH and surface orientation on the photochemical reactivity of SrTiO3. ACS Appl. Mater. Interfaces 12, 23617–23626 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins, J. L. et al. Electrical and chemical characterizations of hafnium (IV) oxide films for biological lab-on-a-chip devices. Thin Solid Films 662, 60–69 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kosmulski, M. Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2. Langmuir 13, 6315–6320 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Zielińska-Jurek, A. et al. Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts 7, 360 (2017).

    Article 

    Google Scholar
     

  • Hu, Q., Weber, C., Cheng, H. W., Renner, F. U. & Valtiner, M. Anion layering and steric hydration repulsion on positively charged surfaces in aqueous electrolytes. Chem. Phys. Chem. 18, 3056–3065 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, Z. H. & Huang, R. Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene. J. Appl. Phys. 107, 123531 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications Vol. 2 (Academic Press, 2013).

  • Liu, H., Steigerwald, M. L. & Nuckolls, C. Electrical double layer catalyzed wet-etching of silicon dioxide. J. Am. Chem. Soc. 131, 17034–17035 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J. et al. Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat. Electron. 7, 545–556 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ali, U., Karim, K. J. B. A. & Buang, N. A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55, 678–705 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhuang, B., Li, S., Li, S. & Yin, J. Ways to eliminate PMMA residues on graphene—superclean graphene. Carbon 173, 609–636 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, A. Y. et al. Unraveling the correlation between Raman and photoluminescence in monolayer MoS2 through machine-learning models. Adv. Mater. 34, e2202911 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Dresselhaus, M. S., Jorio, A., Souza Filho, A. G. & Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355–5377 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Appl. Phys. Lett. 118, 093103 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, H.-Y., Zhu, W. & Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 104, 113504 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Meng, W. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Wafer-scale integration of highly uniform and scalable MoS2 transistors. ACS Appl. Mater. Interfaces 9, 37146–37153 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, J. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, H. et al. Monolayer MoS2 field-effect transistors patterned by photolithography for active matrix pixels in organic light-emitting diodes. npj 2D Mater. Appl. 3, 9 (2019).

    Article 

    Google Scholar
     

  • Liu, H. et al. Controlled adhesion of ice—toward ultraclean 2D materials. Adv. Mater. 35, 2210503 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z. et al. Universal transfer and stacking of chemical vapor deposition grown two-dimensional atomic layers with water-soluble polymer mediator. ACS Nano 10, 5237–5242 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, S. et al. Integration of epitaxial monolayer MX2 channels on 300mm wafers via Collective-Die-To-Wafer (CoD2W) transfer. In Proc. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 1–2 (IEEE 2023).

  • Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mondal, A. et al. Low ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat. Nanotechnol. 19, 34–43 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, Y.-Y. et al. First demonstration of GAA monolayer–MoS2 nanosheet nFET with 410 μA μm ID 1 V VD at 40 nm gate length. In Proc. 2022 IEEE International Electron Devices Meeting (IEDM) 34–35 (IEEE, 2022).

  • Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Superior electrostatic control in uniform monolayer MoS2 scaled transistors via in-situ surface smoothening. In Proc. 2021 IEEE International Electron Devices Meeting (IEDM) 37.1.1–37.1.4 (IEEE, 2021).

  • Penumatcha, A. et al. High mobility TMD NMOS and PMOS transistors and GAA architecture for ultimate CMOS scaling. In 2023 International Electron Devices Meeting (IEDM) 1–4 (IEEE, 2023).

  • Hwang, S. et al. A facile approach towards Wrinkle-Free transfer of 2D-MoS2 films via hydrophilic Si3N4 substrate. Appl. Surf. Sci. 604, 154523 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dai, Z., Lu, N., Liechti, K. M. & Huang, R. Mechanics at the interfaces of 2D materials: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 24, 100837 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, R., Gan, L., Ou, X., Zhang, Q. & Luo, Z. Detaching graphene from copper substrate by oxidation-assisted water intercalation. Carbon 98, 138–143 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, G. et al. Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ma, D. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 8, 3662–3672 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schranghamer, T. F. et al. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 50, 11032–11054 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez, D. A. et al. Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl Acad. Sci. 115, 7884–7889 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilpatrick, J. I., Loh, S. H. & Jarvis, S. P. Directly probing the effects of ions on hydration forces at interfaces. J. Am. Chem. Soc. 135, 2628–2634 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X., Huang, K., Zhao, M., Li, F. & Liu, H. A modified wrinkle-free MoS2 film transfer method for large area high mobility field-effect transistor. Nanotechnology 31, 055707 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Lee, M. K., Park, S.-M., Hong, S. & Kim, N. A study on the mechanical properties and deformation behavior of injection molded PMMA-TSP laminated composite. Korea Aust. Rheol. J. 24, 23–33 (2012).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Thermal expansion coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy. Nano Lett. 19, 4745–4751 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, W. et al. Structure and electronic transport in graphene wrinkles. Nano Lett. 12, 3431–3436 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 2006).

  • Nicollian, E. H. & Goetzberger, A. The Si–SiO2 interface—electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055–1133 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Interface states in gate stack of carbon nanotube array transistors. ACS Nano 18, 19086–19098 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castagne, R. & Vapaile, A. Description of the SiO2–Si interface properties by means of very low frequency MOS capacitance measurements. Surf. Sci. 28, 157–193 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seidel, H., Csepregi, L., Heuberger, A. & Baumgärtel, H. Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137, 3612–3626 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Biswas, K. & Kal, S. Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon. Microelectron. J. 37, 519–525 (2006).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments