Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Pal, A. et al. Three-dimensional transistors with two-dimensional semiconductors for future CMOS scaling. Nat. Electron. 7, 1147–1157 (2024).
Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).
Zhao, B. et al. Gate-driven band modulation hyperdoping for high-performance p-type 2D semiconductor transistors. Science 388, 1183–1188 (2025).
Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).
Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).
Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
Fu, J.-H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).
Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).
Kim, J. Y., Ju, X., Ang, K. W. & Chi, D. Van der Waals layer transfer of 2D materials for monolithic 3D electronic system integration: review and outlook. ACS Nano 17, 1831–1844 (2023).
Guo, H.-W., Hu, Z., Liu, Z.-B. & Tian, J.-G. Stacking of 2D materials. Adv. Funct. Mater. 31, 2007810 (2021).
Watson, A. J., Lu, W., Guimarães, M. H. D. & Stöhr, M. Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Mater. 8, 032001 (2021).
Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).
Agmo Hernández, V. An overview of surface forces and the DLVO theory. ChemTexts 9, 10 (2023).
Itano, M., Kern, F. W., Miyashita, M. & Ohmi, T. Particle removal from silicon wafer surface in wet cleaning process. IEEE Trans. Semicond. Manuf. 6, 258–267 (1993).
Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).
Butt, H.-J. & Kappl, M. Surface and Interfacial Forces 2nd edn (Wiley, 2018).
Muneer, R., Rehan Hashmet, M. & Pourafshary, P. Fine migration control in sandstones: surface force analysis and application of DLVO theory. ACS Omega 5, 31624–31639 (2020).
Huang, S. et al. Fabrication of ultrathin MoS2 nanosheets and application on adsorption of organic pollutants and heavy metals. Processes 8, 504 (2020).
Salomão, R. & Brandi, J. Filamentous alumina–chitosan porous structures produced by gelcasting. Ceram. Int. 39, 7751–7757 (2013).
Huang, C.-J., Wang, L.-C., Liu, C.-Y., Chiang, A. S. T. & Chang, Y.-C. Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties. Biointerphases 9, 029010 (2014).
Zuccaro, L., Krieg, J., Desideri, A., Kern, K. & Balasubramanian, K. Tuning the isoelectric point of graphene by electrochemical functionalization. Sci. Rep. 5, 11794 (2015).
Lefèvre, G. et al. Determination of isoelectric points of metals and metallic alloys by adhesion of latex particles. J. Colloid Interface Sci. 337, 449–455 (2009).
Xiong, C. & Tu, W. Synthesis of water-dispersible boron nitride nanoparticles. Eur. J. Inorg. Chem. 2014, 3010–3015 (2014).
McPhail, M. R., Sells, J. A., He, Z. & Chusuei, C. C. Charging nanowalls: adjusting the carbon nanotube isoelectric point via surface functionalization. J. Phys. Chem. C 113, 14102–14109 (2009).
Kallay, N., Torbic, Z., Golic, M. & Matijevic, E. Determination of the isoelectric points of several metals by an adhesion method. J. Phys. Chem. 95, 7028–7032 (1991).
Xia, Z., Rozyyev, V., Mane, A. U., Elam, J. W. & Darling, S. B. Surface zeta potential of ALD-grown metal-oxide films. Langmuir 37, 11618–11624 (2021).
Bišćan, J., Kosec, M. & Kallay, N. The isoelectric conditions of the constituents of the complex oxide Pb(Zr,Ti)O3. Colloids Surf. A Physicochem. Eng. Asp. 79, 217–226 (1993).
Bišćan, J., Kallay, N. & Smolić, T. Determination of iso-electric point of silicon nitride by adhesion method. Colloids Surf. A Physicochem. Eng. Asp. 165, 115–123 (2000).
Franks, G. V. & Meagher, L. The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids Surf. A Physicochem. Eng. Asp. 214, 99–110 (2003).
Zhang, M., Salvador, P. A. & Rohrer, G. S. Influence of pH and surface orientation on the photochemical reactivity of SrTiO3. ACS Appl. Mater. Interfaces 12, 23617–23626 (2020).
Collins, J. L. et al. Electrical and chemical characterizations of hafnium (IV) oxide films for biological lab-on-a-chip devices. Thin Solid Films 662, 60–69 (2018).
Kosmulski, M. Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2. Langmuir 13, 6315–6320 (1997).
Zielińska-Jurek, A. et al. Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts 7, 360 (2017).
Hu, Q., Weber, C., Cheng, H. W., Renner, F. U. & Valtiner, M. Anion layering and steric hydration repulsion on positively charged surfaces in aqueous electrolytes. Chem. Phys. Chem. 18, 3056–3065 (2017).
Wang, Z. et al. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017).
Aitken, Z. H. & Huang, R. Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene. J. Appl. Phys. 107, 123531 (2010).
Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications Vol. 2 (Academic Press, 2013).
Liu, H., Steigerwald, M. L. & Nuckolls, C. Electrical double layer catalyzed wet-etching of silicon dioxide. J. Am. Chem. Soc. 131, 17034–17035 (2009).
Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).
Jiang, J. et al. Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat. Electron. 7, 545–556 (2024).
Ali, U., Karim, K. J. B. A. & Buang, N. A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55, 678–705 (2015).
Zhuang, B., Li, S., Li, S. & Yin, J. Ways to eliminate PMMA residues on graphene—superclean graphene. Carbon 173, 609–636 (2021).
Lu, A. Y. et al. Unraveling the correlation between Raman and photoluminescence in monolayer MoS2 through machine-learning models. Adv. Mater. 34, e2202911 (2022).
Dresselhaus, M. S., Jorio, A., Souza Filho, A. G. & Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355–5377 (2010).
Zheng, X. et al. Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Appl. Phys. Lett. 118, 093103 (2021).
Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).
Chang, H.-Y., Zhu, W. & Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 104, 113504 (2014).
Meng, W. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).
Kim, Y. et al. Wafer-scale integration of highly uniform and scalable MoS2 transistors. ACS Appl. Mater. Interfaces 9, 37146–37153 (2017).
Tang, J. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023).
Kwon, H. et al. Monolayer MoS2 field-effect transistors patterned by photolithography for active matrix pixels in organic light-emitting diodes. npj 2D Mater. Appl. 3, 9 (2019).
Liu, H. et al. Controlled adhesion of ice—toward ultraclean 2D materials. Adv. Mater. 35, 2210503 (2023).
Lu, Z. et al. Universal transfer and stacking of chemical vapor deposition grown two-dimensional atomic layers with water-soluble polymer mediator. ACS Nano 10, 5237–5242 (2016).
Ghosh, S. et al. Integration of epitaxial monolayer MX2 channels on 300mm wafers via Collective-Die-To-Wafer (CoD2W) transfer. In Proc. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 1–2 (IEEE 2023).
Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).
Mondal, A. et al. Low ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat. Nanotechnol. 19, 34–43 (2024).
Chung, Y.-Y. et al. First demonstration of GAA monolayer–MoS2 nanosheet nFET with 410 μA μm ID 1 V VD at 40 nm gate length. In Proc. 2022 IEEE International Electron Devices Meeting (IEDM) 34–35 (IEEE, 2022).
Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).
Shi, Y. et al. Superior electrostatic control in uniform monolayer MoS2 scaled transistors via in-situ surface smoothening. In Proc. 2021 IEEE International Electron Devices Meeting (IEDM) 37.1.1–37.1.4 (IEEE, 2021).
Penumatcha, A. et al. High mobility TMD NMOS and PMOS transistors and GAA architecture for ultimate CMOS scaling. In 2023 International Electron Devices Meeting (IEDM) 1–4 (IEEE, 2023).
Hwang, S. et al. A facile approach towards Wrinkle-Free transfer of 2D-MoS2 films via hydrophilic Si3N4 substrate. Appl. Surf. Sci. 604, 154523 (2022).
Dai, Z., Lu, N., Liechti, K. M. & Huang, R. Mechanics at the interfaces of 2D materials: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 24, 100837 (2020).
Wu, R., Gan, L., Ou, X., Zhang, Q. & Luo, Z. Detaching graphene from copper substrate by oxidation-assisted water intercalation. Carbon 98, 138–143 (2016).
Yuan, G. et al. Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020).
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).
Ma, D. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 8, 3662–3672 (2015).
Schranghamer, T. F. et al. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 50, 11032–11054 (2021).
Sanchez, D. A. et al. Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl Acad. Sci. 115, 7884–7889 (2018).
Kilpatrick, J. I., Loh, S. H. & Jarvis, S. P. Directly probing the effects of ions on hydration forces at interfaces. J. Am. Chem. Soc. 135, 2628–2634 (2013).
Zhao, Y. et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022).
Liu, X., Huang, K., Zhao, M., Li, F. & Liu, H. A modified wrinkle-free MoS2 film transfer method for large area high mobility field-effect transistor. Nanotechnology 31, 055707 (2020).
Wang, J., Lee, M. K., Park, S.-M., Hong, S. & Kim, N. A study on the mechanical properties and deformation behavior of injection molded PMMA-TSP laminated composite. Korea Aust. Rheol. J. 24, 23–33 (2012).
Zhang, L. et al. Thermal expansion coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy. Nano Lett. 19, 4745–4751 (2019).
Zhu, W. et al. Structure and electronic transport in graphene wrinkles. Nano Lett. 12, 3431–3436 (2012).
Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 2006).
Nicollian, E. H. & Goetzberger, A. The Si–SiO2 interface—electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055–1133 (1967).
Liu, Y. et al. Interface states in gate stack of carbon nanotube array transistors. ACS Nano 18, 19086–19098 (2024).
Castagne, R. & Vapaile, A. Description of the SiO2–Si interface properties by means of very low frequency MOS capacitance measurements. Surf. Sci. 28, 157–193 (1971).
Seidel, H., Csepregi, L., Heuberger, A. & Baumgärtel, H. Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137, 3612–3626 (1990).
Biswas, K. & Kal, S. Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon. Microelectron. J. 37, 519–525 (2006).