Dalzell, A. M. et al. Quantum Algorithms: A Survey of Applications and End-to-End Complexities (Cambridge Univ. Press, 2025).
Beverland, M. E. et al. Assessing requirements to scale to practical quantum advantage. Preprint at https://arxiv.org/abs/2211.07629 (2022).
Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).
Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Preprint at https://arxiv.org/abs/0904.2557 (2010).
Gottesman, D. Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14, 1338–1372 (2013).
Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).
Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).
Bravyi, S. B. & Kitaev, A. Y. D. Quantum codes on a lattice with boundary. Preprint at https://arxiv.org/abs/quant-ph/9811052 (1998).
Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).
Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).
Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Cain, M. et al. Correlated decoding of logical algorithms with transversal gates. Phys. Rev. Lett. 133, 240602 (2024).
Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).
Hastings, M. B. Topological order at nonzero temperature. Phys. Rev. Lett. 107, 210501 (2011).
Raussendorf, R. Quantum computation via translation-invariant operations on a chain of qubits. Phys. Rev. A 72, 052301 (2005).
Cohen, L. Z., Kim, I. H., Bartlett, S. D. & Brown, B. J. Low-overhead fault-tolerant quantum computing using long-range connectivity. Sci. Adv. 8, eabn1717 (2022).
Xu, Q. et al. Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays. Nat. Phys. 20, 1084–1090 (2024).
Yamasaki, H. & Koashi, M. Time-efficient constant-space-overhead fault-tolerant quantum computation. Nat. Phys. 20, 247–253 (2024).
Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).
Tremblay, M. A., Delfosse, N. & Beverland, M. E. Constant-overhead quantum error correction with thin planar connectivity. Phys. Rev. Lett. 129, 050504 (2022).
Bombín, H. Single-shot fault-tolerant quantum error correction. Phys. Rev. X 5, 031043 (2015).
Campbell, E. T. A theory of single-shot error correction for adversarial noise. Quantum Sci. Technol. 4, 025006 (2019).
Beverland, M. E., Kubica, A. & Svore, K. M. Cost of universality: a comparative study of the overhead of state distillation and code switching with color codes. PRX Quantum 2, 020341 (2021).
Delfosse, N. & Paetznick, A. Spacetime codes of Clifford circuits. Preprint at https://arxiv.org/abs/2304.05943 (2023).
Gidney, C. Stim: a fast stabilizer circuit simulator. Quantum 5, 497 (2021).
Gottesman, D. Opportunities and challenges in fault-tolerant quantum computation. Preprint at https://arxiv.org/abs/2210.15844 (2022).
Cai, Z., Siegel, A. & Benjamin, S. Looped pipelines enabling effective 3D qubit lattices in a strictly 2D device. PRX Quantum 4, 020345 (2023).
Duckering, C., Baker, J. M., Schuster, D. I. & Chong, F. T. Virtualized logical qubits: a 2.5D architecture for error-corrected quantum computing. In Proc. Annual International Symposium on Microarchitecture (MICRO) 173–185 (IEEE, 2020).
Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996).
Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).
Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675–680 (2022).
Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code. Preprint at https://arxiv.org/abs/2208.01863 (2022).
Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).
Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009).
Jochym-O’Connor, T., Kubica, A. & Yoder, T. J. Disjointness of stabilizer codes and limitations on fault-tolerant logical gates. Phys. Rev. X 8, 021047 (2018).
Li, Y. A magic state’s fidelity can be superior to the operations that created it. New J. Phys. 17, 023037 (2015).
Haah, J. What is your logical qubit. In Proc. Simons Institute Workshop on Advances in Quantum Coding Theory (Simons Institute for the Theory of Computing, 2024).
Cain, M. et al. Fast correlated decoding of transversal logical algorithms. Preprint at https://arxiv.org/abs/2505.13587 (2025).
Serra-Peralta, M., Shaw, M. H. & Terhal, B. M. Decoding across transversal Clifford gates in the surface code. Preprint at https://arxiv.org/abs/2505.13599 (2025).
Kovalev, A. A. & Pryadko, L. P. Fault tolerance of quantum low-density parity check codes with sublinear distance scaling. Phys. Rev. A 87, 020304 (2013).
Higgott, O., Bohdanowicz, T. C., Kubica, A., Flammia, S. T. & Campbell, E. T. Improved decoding of circuit noise and fragile boundaries of tailored surface codes. Phys. Rev. X 13, 031007 (2023).
Gurobi Optimization. Gurobi Optimizer Reference Manual (Gurobi Optimization, 2024).
Kim, I. H. et al. Fault-tolerant resource estimate for quantum chemical simulations: case study on Li-ion battery electrolyte molecules. Phys. Rev. Res. 4, 023019 (2022).
Fowler, A. G. & Gidney, C. Low overhead quantum computation using lattice surgery. Preprint at https://arxiv.org/abs/1808.06709 (2018).
Turner, M. L., Campbell, E. T., Crawford, O., Gillespie, N. I. & Camps, J. Scalable decoding protocols for fast transversal logic in the surface code. Preprint at https://arxiv.org/abs/2505.23567 (2025).
Fowler, A. G. Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time. Quantum Inf. Comput.15, 145–158 (2015).
Duclos-Cianci, G. & Poulin, D. Fast decoders for topological quantum codes. Phys. Rev. Lett. 104, 050504 (2010).
Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).
Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).
Tillich, J. P. & Zemor, G. Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Trans. Inf. Theory 60, 1193–1202 (2014).
Panteleev, P. & Kalachev, G. Asymptotically good quantum and locally testable classical LDPC codes. In Proc. Annual ACM Symposium on Theory of Computing 375–388 (IEEE, 2022).
Fawzi, O., Grospellier, A. & Leverrier, A. Constant overhead quantum fault-tolerance with quantum expander codes. In Proc. 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) 743–754 (IEEE, 2018).
Gu, S. et al. Single-shot decoding of good quantum LDPC codes. Commun. Math. Phys. 405, 85 (2024).
Bombín, H. Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys. 17, 083002 (2015).
Kubica, A., Yoshida, B. & Pastawski, F. Unfolding the color code. New J. Phys. 17, 083026 (2015).
Bombin, H. Transversal gates and error propagation in 3D topological codes. Preprint at https://arxiv.org/abs/1810.09575 (2018).
Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (1999).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
Pattison, C. A., Krishna, A. & Preskill, J. Hierarchical memories: simulating quantum LDPC codes with local gates. Quantum 9, 1728 (2025).
Bravyi, S., Gosset, D., König, R. & Tomamichel, M. Quantum advantage with noisy shallow circuits. Nat. Phys. 16, 1040–1045 (2020).
Moussa, J. E. Transversal Clifford gates on folded surface codes. Phys. Rev. A 94, 042316 (2016).
Breuckmann, N. P. & Burton, S. Fold-transversal Clifford gates for quantum codes. Quantum 8, 1372 (2024).
Quintavalle, A. O., Webster, P. & Vasmer, M. Partitioning qubits in hypergraph product codes to implement logical gates. Quantum 7, 1153 (2023).
Bombín, H. et al. Modular decoding: parallelizable real-time decoding for quantum computers. Preprint at https://arxiv.org/abs/2303.04846 (2023).
Higgott, O. & Breuckmann, N. P. Improved single-shot decoding of higher-dimensional hypergraph-product codes. PRX Quantum 4, 020332 (2023).
Landahl, A. J., Anderson, J. T. & Rice, P. R. Fault-tolerant quantum computing with color codes. Preprint at https://arxiv.org/abs/1108.5738 (2011).
Bravyi, S. & Cross, A. Doubled color codes. Preprint at https://arxiv.org/abs/1509.03239 (2015).
Bacon, D., Flammia, S. T., Harrow, A. W. & Shi, J. Sparse quantum codes from quantum circuits. In Proc. Forty-Seventh Annual ACM Symposium on Theory of Computing 327–334 (ACM, 2014).
Aliferis, P., Gottesman, D. & Preskill, J. Accuracy threshold for postselected quantum computation. Quantum Inf. Comput. 8, 181–244 (2008).
Lao, L. & Criger, B. Magic state injection on the rotated surface code. In Proc. 19th ACM International Conference on Computing Frontiers 113–120 (ACM, 2022).
Gidney, C. Cleaner magic states with hook injection. Preprint at https://arxiv.org/abs/2302.12292 (2023).
Vasmer, M. & Browne, D. E. Three-dimensional surface codes: transversal gates and fault-tolerant architectures. Phys. Rev. A 100, 012312 (2019).
Brown, B. J. A fault-tolerant non-Clifford gate for the surface code in two dimensions. Sci. Adv. 6, 4929–4951 (2020).
Zhu, G., Sikander, S., Portnoy, E., Cross, A. W. & Brown, B. J. Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries. Preprint at https://arxiv.org/abs/2310.16982 (2023).
Bravyi, S., Smith, G. & Smolin, J. A. Trading classical and quantum computational resources. Phys. Rev. X 6, 021043 (2016).
Yoganathan, M., Jozsa, R. & Strelchuk, S. Quantum advantage of unitary Clifford circuits with magic state inputs. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20180427 (2018).
Gidney, C. Halving the cost of quantum addition. Quantum 2, 74 (2018).
Cuccaro, S. A., Draper, T. G., Kutin, S. A. & Moulton, D. P. A new quantum ripple-carry addition circuit. Preprint at https://arxiv.org/abs/quant-ph/0410184 (2004).
Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).
Fowler, A. G. Time-optimal quantum computation. Preprint at https://arxiv.org/abs/1210.4626 (2012).
Litinski, D. & Nickerson, N. Active volume: an architecture for efficient fault-tolerant quantum computers with limited non-local connections. Preprint at https://arxiv.org/abs/2211.15465 (2022).
Knill, E. Quantum computing with very noisy devices. Nature 434, 39–44 (2004).
Gidney, C. & Fowler, A. G. Flexible layout of surface code computations using AutoCCZ states. Preprint at https://arxiv.org/abs/1905.08916 (2019).
Bravyi, S. & Haah, J. Magic-state distillation with low overhead. Phys. Rev. A 86, 052329 (2012).
Kubica, A. & Vasmer, M. Single-shot quantum error correction with the three-dimensional subsystem toric code. Nat. Commun. 13, 6272 (2022).
Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).
Wootton, J. R. & Loss, D. High threshold error correction for the surface code. Phys. Rev. Lett. 109, 160503 (2012).
Fowler, A. G. Optimal complexity correction of correlated errors in the surface code. Preprint at https://arxiv.org/abs/1310.0863 (2013).
Delfosse, N., Londe, V. & Beverland, M. E. Toward a union-find decoder for quantum LDPC codes. IEEE Trans. Inf. Theory 68, 3187–3199 (2022).
Panteleev, P. & Kalachev, G. Degenerate quantum LDPC codes with good finite length performance. Quantum 5, 585 (2019).
Wu, Y., Zhong, L. & Puri, S. Hypergraph minimum-weight parity factor decoder for QEC. In Proc. 2024 APS March Meeting (American Physical Society, 2024).
Bombín, H. Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys. 17, 083002 (2013).
Liyanage, N., Wu, Y., Deters, A. & Zhong, L. Scalable quantum error correction for surface codes using FPGA. In Proc. 31st IEEE International Symposium on Field-Programmable Custom Computing Machine (FCCM) 217 (IEEE, 2023).
Richardson, T. & Urbanke, R. Modern Coding Theory (Cambridge Univ. Press, 2008).
Wu, Y. & Zhong, L. Fusion Blossom: fast MWPM decoders for QEC. In Proc. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 928–938 (IEEE, 2023).
Grospellier, A. Constant Time Decoding of Quantum Expander Codes and Application to Fault-Tolerant Quantum Computation. PhD thesis, Sorbonne Univ. (2019).
Tan, X., Zhang, F., Chao, R., Shi, Y. & Chen, J. Scalable surface-code decoders with parallelization in time. PRX Quantum 4, 040344 (2023).
Skoric, L., Browne, D. E., Barnes, K. M., Gillespie, N. I. & Campbell, E. T. Parallel window decoding enables scalable fault tolerant quantum computation. Nat. Commun. 14, 7040 (2023).
Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).
Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).
Bartolucci, S. et al. Switch networks for photonic fusion-based quantum computing. Preprint at https://arxiv.org/abs/2109.13760 (2021).
Zhou, H. et al. Data for “Low-Overhead Transversal Fault Tolerance for Universal Quantum Computation”. Zenodo https://doi.org/10.5281/zenodo.16552626 (2025).