Tedesco, P. A. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data https://doi.org/10.1038/sdata.2017.141 (2017).
Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s catalog of fishes. Institute for Biodiversity Science and Sustainability http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2024).
Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L. J. & Gill, A. C. So many fishes, so little time: an overview of recent ichthyological discovery in continental waters. Ann. Mo Bot. Gard. 87, 26–62 (2000).
Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).
Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis (Island, 2005).
Arlinghaus, R. et al. Governing the recreational dimension of global fisheries. Proc. Natl Acad. Sci. USA 116, 5209–5213 (2019).
Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021).
Feio, M. J. et al. Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Glob. Change Biol. 29, 355–374 (2023).
Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).
Paukert, C. et al. Climate change effects on North American fish and fisheries to inform adaptation strategies. Fisheries 46, 449–464 (2021).
Su, G. H. et al. Human impacts on global freshwater fish biodiversity. Science 371, 835–838 (2021).
Danet, A., Giam, X., Olden, J. D. & Comte, L. Past and recent anthropogenic pressures drive rapid changes in riverine fish communities. Nat. Ecol. Evol. 8, 442–453 (2024).
Kuczynski, L., Legendre, P. & Grenouillet, G. Concomitant impacts of climate change, fragmentation and non-native species have led to reorganization of fish communities since the 1980s. Glob. Ecol. Biogeogr. 27, 213–222 (2018).
Isaak, D. J., Wollrab, S., Horan, D. & Chandler, G. Climate change effects on stream and river temperatures across the northwest US from 1980-2009 and implications for salmonid fishes. Clim. Change 113, 499–524 (2012).
Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).
Comte, L., Olden, J. D., Tedesco, P. A., Ruhi, A. & Giam, X. L. Climate and land-use changes interact to drive long-term reorganization of riverine fish communities globally. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2011639118 (2021).
Isaak, D. J. & Luce, C. H. Elevation-dependent warming of streams in mountainous regions: implications for temperature modeling and headwater climate refugia. Can. Water Resour. J. 48, 167–188 (2023).
Hoffmann, R. C. A brief history of aquatic resource use in medieval Europe. Helgol. Mar. Res. 59, 22–30 (2005).
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T. & Brosse, S. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol. 6, 404–410 (2008).
Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).
Pease, A. A. & Paukert, C. P. Potential impacts of climate change on growth and prey consumption of stream-dwelling smallmouth bass in the central United States. Ecol. Freshw. Fish. 23, 336–346 (2014).
Farmer, T. M., Marschall, E. A., Dabrowski, K. & Ludsin, S. A. Short winters threaten temperate fish populations. Nat. Commun. 6, 7724 (2015).
Lyons, J. et al. Trends in the reproductive phenology of two Great Lakes fishes. Trans. Am. Fish. Soc. 144, 1263–1274 (2015).
Comte, L. et al. RivFishTIME: a global database of fish time-series to study global change ecology in riverine systems. Glob. Ecol. Biogeogr. 30, 38–50 (2021).
Oberdorff, T. et al. Global and regional patterns in riverine fish species richness: a review. Int. J. Ecol. 2011, 967631 (2011).
Val, P., Lyons, N. J., Gasparini, N., Willenbring, J. K. & Albert, J. S. Landscape evolution as a diversification driver in freshwater fishes. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.788328 (2022).
National rivers and streams assessment 2008–2009 results. US Environmental Protection Agency www.epa.gov/national-aquatic-resource-surveys/national-rivers-and-streams-assessment-2008-2009-results (2016).
National rivers and streams assessment 2013–2014 results. US Environmental Protection Agency www.epa.gov/national-aquatic-resource-surveys/national-rivers-and-streams-assessment-2013-2014-results (2020).
National rivers and streams assessment 2018–2019 results. US Environmental Protection Agency www.epa.gov/national-aquatic-resource-surveys/national-rivers-and-streams-assessment-2018-19-results (2022).
BioData – aquatic bioassessment data for the nation (US Geological Survey, 2020).
MacCoy, D. Biodata: A National Aquatic Bioassessment Database. Fact Sheet No. 2011-3112 (US Geological Survey, 2011).
Mahon, M. B. et al. finsyncR, an R package to synchronize 27 years of fish and invertebrate data across the United States. Preprint at bioRxiv https://doi.org/10.1101/2024.02.22.581615 (2024).
Olsen, A. R. & Peck, D. V. Survey design and extent estimates for the Wadeable Streams Assessment. J. North Am. Benthol. Soc. 27, 822–836 (2008).
Fuller, M. R., Leinenbach, P., Detenbeck, N. E., Labiosa, R. & Isaak, D. J. Riparian vegetation shade restoration and loss effects on recent and future stream temperatures. Restor. Ecol. 30, 0 (2022).
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
Mims, M. C., Olden, J. D., Shattuck, Z. R. & Poff, N. L. Life history trait diversity of native freshwater fishes in North America. Ecol. Freshw. Fish. 19, 390–400 (2010).
Thorson, J. T. et al. Identifying direct and indirect associations among traits by merging phylogenetic comparative methods and structural equation modelsKey-words. Methods Ecol. Evol. 14, 1259–1275 (2023).
Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North-American fishes – implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).
Winemiller, K. O. Life history strategies, population regulation, and implications for fisheries management. Can. J. Fish. Aquat. Sci. 62, 872–885 (2005).
Nonindigenous aquatic species database. US Geological Survey http://nas.er.usgs.gov (2024).
Donaldson, M. R. et al. Contrasting global game fish and non-game fish species. Fisheries 36, 385–397 (2011).
Blowes, S. A. et al. Local biodiversity change reflects interactions among changing abundance, evenness, and richness. Ecology https://doi.org/10.1002/ecy.3820 (2022).
Bell, D. A. et al. Climate change and expanding invasive species drive widespread declines of native trout in the northern Rocky Mountains, USA. Sci. Adv. 7, eabj5471 (2021).
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).
Al-Chokhachy, R. et al. Are brown trout replacing or displacing bull trout populations in a changing climate? Can. J. Fish. Aquat. Sci. 73, 1395–1404 (2016).
Coulter, A. A. et al. A synthesis of the characteristics and drivers of introduced fishes in prairie streams: can we manage introduced harmful fishes in these dynamic environments? Biol. Invasions 26, 4011–4033 (2024).
Isaak, D. J. et al. The NorWeST summer stream temperature model and scenarios for the western U.S.: a crowd‐sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53, 9181–9205 (2017).
Grotjahn, R. & Huynh, J. Contiguous US summer maximum temperature and heat stress trends in CRU and NOAA Climate Division data plus comparisons to reanalyses. Sci. Rep. https://doi.org/10.1038/s41598-018-29286-w (2018).
Lynch, A. J. et al. Climate change effects on North American inland fish populations and assemblages. Fisheries 41, 346–361 (2016).
Mote, P. W., Li, S. H., Lettenmaier, D. P., Xiao, M. & Engel, R. Dramatic declines in snowpack in the western US. NPJ Clim. Atmos. Sci. 1, 2 (2018).
Dunham, J. B., Rosenberger, A. E., Luce, C. H. & Rieman, B. E. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians. Ecosystems 10, 335–346 (2007).
Cooke, S. J. et al. Threats, conservation strategies, and prognosis for suckers (Catostomidae) in North America: insights from regional case studies of a diverse family of non-game fishes. Biol. Conserv. 121, 317–331 (2005).
Rumschlag, S. L. et al. Density declines, richness increases, and composition shifts in stream macroinvertebrates. Sci. Adv. https://doi.org/10.1126/sciadv.adf4896 (2023).
De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).
Heino, J., Virkkala, R. & Toivonen, H. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39–54 (2009).
Moulton II, S. R., Kennen, J., Goldstein, R. M. & Hambrook, J. A. Revised Protocols for Sampling Algal, Invertebrate, and Fish Communities as Part of the National Water-Quality Assessment Program. Open-File Report 02-150 (US Geological Survey, 2002).
National Rivers and Streams Assessment: Field Operations Manual. EPA 841/B-04/004 (US Environmental Protection Agency, 2009).
National Rivers and Streams Assessment 2013/14: Field Operations Manual Wadeable. EPA 841/B-12/009b (US Environmental Protection Agency, 2013).
National Rivers and Streams Assessment 2018/19: Field Operations Manual Wadeable. EPA-841-B-17-003a (US Environmental Protection Agency, 2019).
Seaber, P. R., Kapinos, F. P. & Knapp, G. L. Hydrologic Unit Maps. Water Supply Paper 2294 (US Government Printing Office, 1987).
Cowx, I. G. & Lamarque, P. Fishing with Electricity: Applications in Freshwater Fisheries Management (Fishing News Books, 1990).
Mullin, C. A., Greif, J., Marler, H. & Hinman, E. TADA: Tools for Automated Data Analysis (US Environmental Protection Agency, 2024).
Eugster, M. J. A. & Leisch, F. From Spider-Man to hero – archetypal analysis in R. J. Stat. Softw. 30, 1–23 (2009).
Weber, M. H., Hill, R. A. & Brookes, A. F. StreamCatTools: tools to work with the StreamCat API within R and access the full suite of StreamCat and LakeCat metrics. GitHub https://usepa.github.io/StreamCatTools (2024).
Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R. & Thornbrugh, D. J. The Stream-Catchment (Streamcat) dataset: a database of watershed metrics for the conterminous United States. J. Am. Water Resour. 52, 120–128 (2016).
Doyle, J. M., Hill, R. A., Leibowitz, S. G. & Ebersole, J. L. Random forest models to estimate bankfull and low flow channel widths and depths across the conterminous United States. J. Am. Water Resour. Assoc. 59, 1099–1114 (2023).
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Grenié, M. & Gruson, H. fundiversity: a modular R package to compute functional diversity indices. Ecography https://doi.org/10.1111/ecog.06585 (2023).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114 (2014).
Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
Hill, R. A., Hawkins, C. P. & Carlisle, D. M. Predicting thermal reference conditions for USA streams and rivers. Freshw. Sci. 32, 39–55 (2013).
DeWeber, J. T. & Wagner, T. A regional neural network ensemble for predicting mean daily river water temperature. J. Hydrol. 517, 187–200 (2014).
Isaak, D. J. et al. Thermal regimes of perennial rivers and streams in the western United States. J. Am. Water Resour. 56, 842–867 (2020).
McKay, L. et al. NHDPlus Version 2.1: User Guide (US Environmental Protection Agency, 2019); www.epa.gov/system/files/documents/2023-04/NHDPlusV2_User_Guide.pdf.
Ostroff, A., Wieferich, D., Cooper, A., Infante, D & USGS Aquatic GAP Program. National Anthropogenic Barrier Dataset (NABD) (US Geological Survey, 2012).
Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L. & Dewitz, J. A. Thematic accuracy assessment of the NLCD 2019 land cover for the conterminous United States. GIsci. Remote Sens. https://doi.org/10.1080/15481603.2023.2181143 (2023).
Segura, C., Caldwell, P., Sun, G., McNulty, S. & Zhang, Y. A model to predict stream water temperature across the conterminous USA. Hydrol. Process 29, 2178–2195 (2015).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Dumelle, M., Higham, M. & Ver Hoef, J. M. spmodel: spatial statistical modeling and prediction in R. PLoS ONE https://doi.org/10.1371/journal.pone.0282524 (2023).
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
Lenth, R. emmeans: estimated marginal means, aka least-squares means. R package v.1.10.2 https://CRAN.R-project.org/package=emmeans (2024).
Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer Nature, 2009).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2009).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Chung, Y. J., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. C. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78, 685–709 (2013).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Series B Stat. Methodol. 73, 3–36 (2011).
Rumschlag, S. L. et al. Data and source code for ‘Diverging fish biodiversity trends in cold and warm rivers and streams’. Figshare https://doi.org/10.6084/m9.figshare.28049777 (2025).