Thursday, September 25, 2025
No menu items!
HomeNatureDiverging fish biodiversity trends in cold and warm rivers and streams

Diverging fish biodiversity trends in cold and warm rivers and streams

  • Tedesco, P. A. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data https://doi.org/10.1038/sdata.2017.141 (2017).

  • Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s catalog of fishes. Institute for Biodiversity Science and Sustainability http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2024).

  • Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L. J. & Gill, A. C. So many fishes, so little time: an overview of recent ichthyological discovery in continental waters. Ann. Mo Bot. Gard. 87, 26–62 (2000).

    Article 

    Google Scholar
     

  • Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).

    Article 

    Google Scholar
     

  • Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis (Island, 2005).

  • Arlinghaus, R. et al. Governing the recreational dimension of global fisheries. Proc. Natl Acad. Sci. USA 116, 5209–5213 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Feio, M. J. et al. Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Glob. Change Biol. 29, 355–374 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article 

    Google Scholar
     

  • Paukert, C. et al. Climate change effects on North American fish and fisheries to inform adaptation strategies. Fisheries 46, 449–464 (2021).

    Article 

    Google Scholar
     

  • Su, G. H. et al. Human impacts on global freshwater fish biodiversity. Science 371, 835–838 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Danet, A., Giam, X., Olden, J. D. & Comte, L. Past and recent anthropogenic pressures drive rapid changes in riverine fish communities. Nat. Ecol. Evol. 8, 442–453 (2024).

  • Kuczynski, L., Legendre, P. & Grenouillet, G. Concomitant impacts of climate change, fragmentation and non-native species have led to reorganization of fish communities since the 1980s. Glob. Ecol. Biogeogr. 27, 213–222 (2018).

    Article 

    Google Scholar
     

  • Isaak, D. J., Wollrab, S., Horan, D. & Chandler, G. Climate change effects on stream and river temperatures across the northwest US from 1980-2009 and implications for salmonid fishes. Clim. Change 113, 499–524 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).

    Article 

    Google Scholar
     

  • Comte, L., Olden, J. D., Tedesco, P. A., Ruhi, A. & Giam, X. L. Climate and land-use changes interact to drive long-term reorganization of riverine fish communities globally. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2011639118 (2021).

  • Isaak, D. J. & Luce, C. H. Elevation-dependent warming of streams in mountainous regions: implications for temperature modeling and headwater climate refugia. Can. Water Resour. J. 48, 167–188 (2023).

    Article 

    Google Scholar
     

  • Hoffmann, R. C. A brief history of aquatic resource use in medieval Europe. Helgol. Mar. Res. 59, 22–30 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T. & Brosse, S. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol. 6, 404–410 (2008).

    CAS 

    Google Scholar
     

  • Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Pease, A. A. & Paukert, C. P. Potential impacts of climate change on growth and prey consumption of stream-dwelling smallmouth bass in the central United States. Ecol. Freshw. Fish. 23, 336–346 (2014).

    Article 

    Google Scholar
     

  • Farmer, T. M., Marschall, E. A., Dabrowski, K. & Ludsin, S. A. Short winters threaten temperate fish populations. Nat. Commun. 6, 7724 (2015).

  • Lyons, J. et al. Trends in the reproductive phenology of two Great Lakes fishes. Trans. Am. Fish. Soc. 144, 1263–1274 (2015).

    Article 

    Google Scholar
     

  • Comte, L. et al. RivFishTIME: a global database of fish time-series to study global change ecology in riverine systems. Glob. Ecol. Biogeogr. 30, 38–50 (2021).

    Article 

    Google Scholar
     

  • Oberdorff, T. et al. Global and regional patterns in riverine fish species richness: a review. Int. J. Ecol. 2011, 967631 (2011).

    Article 

    Google Scholar
     

  • Val, P., Lyons, N. J., Gasparini, N., Willenbring, J. K. & Albert, J. S. Landscape evolution as a diversification driver in freshwater fishes. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.788328 (2022).

  • National rivers and streams assessment 2008–2009 results. US Environmental Protection Agency www.epa.gov/national-aquatic-resource-surveys/national-rivers-and-streams-assessment-2008-2009-results (2016).

  • National rivers and streams assessment 2013–2014 results. US Environmental Protection Agency www.epa.gov/national-aquatic-resource-surveys/national-rivers-and-streams-assessment-2013-2014-results (2020).

  • National rivers and streams assessment 2018–2019 results. US Environmental Protection Agency www.epa.gov/national-aquatic-resource-surveys/national-rivers-and-streams-assessment-2018-19-results (2022).

  • BioData – aquatic bioassessment data for the nation (US Geological Survey, 2020).

  • MacCoy, D. Biodata: A National Aquatic Bioassessment Database. Fact Sheet No. 2011-3112 (US Geological Survey, 2011).

  • Mahon, M. B. et al. finsyncR, an R package to synchronize 27 years of fish and invertebrate data across the United States. Preprint at bioRxiv https://doi.org/10.1101/2024.02.22.581615 (2024).

  • Olsen, A. R. & Peck, D. V. Survey design and extent estimates for the Wadeable Streams Assessment. J. North Am. Benthol. Soc. 27, 822–836 (2008).

    Article 

    Google Scholar
     

  • Fuller, M. R., Leinenbach, P., Detenbeck, N. E., Labiosa, R. & Isaak, D. J. Riparian vegetation shade restoration and loss effects on recent and future stream temperatures. Restor. Ecol. 30, 0 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Mims, M. C., Olden, J. D., Shattuck, Z. R. & Poff, N. L. Life history trait diversity of native freshwater fishes in North America. Ecol. Freshw. Fish. 19, 390–400 (2010).

    Article 

    Google Scholar
     

  • Thorson, J. T. et al. Identifying direct and indirect associations among traits by merging phylogenetic comparative methods and structural equation modelsKey-words. Methods Ecol. Evol. 14, 1259–1275 (2023).

    Article 

    Google Scholar
     

  • Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North-American fishes – implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).

    Article 

    Google Scholar
     

  • Winemiller, K. O. Life history strategies, population regulation, and implications for fisheries management. Can. J. Fish. Aquat. Sci. 62, 872–885 (2005).

    Article 

    Google Scholar
     

  • Nonindigenous aquatic species database. US Geological Survey http://nas.er.usgs.gov (2024).

  • Donaldson, M. R. et al. Contrasting global game fish and non-game fish species. Fisheries 36, 385–397 (2011).

    Article 

    Google Scholar
     

  • Blowes, S. A. et al. Local biodiversity change reflects interactions among changing abundance, evenness, and richness. Ecology https://doi.org/10.1002/ecy.3820 (2022).

  • Bell, D. A. et al. Climate change and expanding invasive species drive widespread declines of native trout in the northern Rocky Mountains, USA. Sci. Adv. 7, eabj5471 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Al-Chokhachy, R. et al. Are brown trout replacing or displacing bull trout populations in a changing climate? Can. J. Fish. Aquat. Sci. 73, 1395–1404 (2016).

    Article 

    Google Scholar
     

  • Coulter, A. A. et al. A synthesis of the characteristics and drivers of introduced fishes in prairie streams: can we manage introduced harmful fishes in these dynamic environments? Biol. Invasions 26, 4011–4033 (2024).

    Article 

    Google Scholar
     

  • Isaak, D. J. et al. The NorWeST summer stream temperature model and scenarios for the western U.S.: a crowd‐sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53, 9181–9205 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Grotjahn, R. & Huynh, J. Contiguous US summer maximum temperature and heat stress trends in CRU and NOAA Climate Division data plus comparisons to reanalyses. Sci. Rep. https://doi.org/10.1038/s41598-018-29286-w (2018).

  • Lynch, A. J. et al. Climate change effects on North American inland fish populations and assemblages. Fisheries 41, 346–361 (2016).

    Article 

    Google Scholar
     

  • Mote, P. W., Li, S. H., Lettenmaier, D. P., Xiao, M. & Engel, R. Dramatic declines in snowpack in the western US. NPJ Clim. Atmos. Sci. 1, 2 (2018).

  • Dunham, J. B., Rosenberger, A. E., Luce, C. H. & Rieman, B. E. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians. Ecosystems 10, 335–346 (2007).

    Article 

    Google Scholar
     

  • Cooke, S. J. et al. Threats, conservation strategies, and prognosis for suckers (Catostomidae) in North America: insights from regional case studies of a diverse family of non-game fishes. Biol. Conserv. 121, 317–331 (2005).

    Article 

    Google Scholar
     

  • Rumschlag, S. L. et al. Density declines, richness increases, and composition shifts in stream macroinvertebrates. Sci. Adv. https://doi.org/10.1126/sciadv.adf4896 (2023).

  • De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Heino, J., Virkkala, R. & Toivonen, H. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39–54 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Moulton II, S. R., Kennen, J., Goldstein, R. M. & Hambrook, J. A. Revised Protocols for Sampling Algal, Invertebrate, and Fish Communities as Part of the National Water-Quality Assessment Program. Open-File Report 02-150 (US Geological Survey, 2002).

  • National Rivers and Streams Assessment: Field Operations Manual. EPA 841/B-04/004 (US Environmental Protection Agency, 2009).

  • National Rivers and Streams Assessment 2013/14: Field Operations Manual Wadeable. EPA 841/B-12/009b (US Environmental Protection Agency, 2013).

  • National Rivers and Streams Assessment 2018/19: Field Operations Manual Wadeable. EPA-841-B-17-003a (US Environmental Protection Agency, 2019).

  • Seaber, P. R., Kapinos, F. P. & Knapp, G. L. Hydrologic Unit Maps. Water Supply Paper 2294 (US Government Printing Office, 1987).

  • Cowx, I. G. & Lamarque, P. Fishing with Electricity: Applications in Freshwater Fisheries Management (Fishing News Books, 1990).

  • Mullin, C. A., Greif, J., Marler, H. & Hinman, E. TADA: Tools for Automated Data Analysis (US Environmental Protection Agency, 2024).

  • Eugster, M. J. A. & Leisch, F. From Spider-Man to hero – archetypal analysis in R. J. Stat. Softw. 30, 1–23 (2009).

    Article 

    Google Scholar
     

  • Weber, M. H., Hill, R. A. & Brookes, A. F. StreamCatTools: tools to work with the StreamCat API within R and access the full suite of StreamCat and LakeCat metrics. GitHub https://usepa.github.io/StreamCatTools (2024).

  • Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R. & Thornbrugh, D. J. The Stream-Catchment (Streamcat) dataset: a database of watershed metrics for the conterminous United States. J. Am. Water Resour. 52, 120–128 (2016).

    Article 

    Google Scholar
     

  • Doyle, J. M., Hill, R. A., Leibowitz, S. G. & Ebersole, J. L. Random forest models to estimate bankfull and low flow channel widths and depths across the conterminous United States. J. Am. Water Resour. Assoc. 59, 1099–1114 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar
     

  • Grenié, M. & Gruson, H. fundiversity: a modular R package to compute functional diversity indices. Ecography https://doi.org/10.1111/ecog.06585 (2023).

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114 (2014).

  • Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).

    Article 

    Google Scholar
     

  • Hill, R. A., Hawkins, C. P. & Carlisle, D. M. Predicting thermal reference conditions for USA streams and rivers. Freshw. Sci. 32, 39–55 (2013).

    Article 

    Google Scholar
     

  • DeWeber, J. T. & Wagner, T. A regional neural network ensemble for predicting mean daily river water temperature. J. Hydrol. 517, 187–200 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Isaak, D. J. et al. Thermal regimes of perennial rivers and streams in the western United States. J. Am. Water Resour. 56, 842–867 (2020).

    Article 

    Google Scholar
     

  • McKay, L. et al. NHDPlus Version 2.1: User Guide (US Environmental Protection Agency, 2019); www.epa.gov/system/files/documents/2023-04/NHDPlusV2_User_Guide.pdf.

  • Ostroff, A., Wieferich, D., Cooper, A., Infante, D & USGS Aquatic GAP Program. National Anthropogenic Barrier Dataset (NABD) (US Geological Survey, 2012).

  • Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L. & Dewitz, J. A. Thematic accuracy assessment of the NLCD 2019 land cover for the conterminous United States. GIsci. Remote Sens. https://doi.org/10.1080/15481603.2023.2181143 (2023).

  • Segura, C., Caldwell, P., Sun, G., McNulty, S. & Zhang, Y. A model to predict stream water temperature across the conterminous USA. Hydrol. Process 29, 2178–2195 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar
     

  • Dumelle, M., Higham, M. & Ver Hoef, J. M. spmodel: spatial statistical modeling and prediction in R. PLoS ONE https://doi.org/10.1371/journal.pone.0282524 (2023).

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar
     

  • Lenth, R. emmeans: estimated marginal means, aka least-squares means. R package v.1.10.2 https://CRAN.R-project.org/package=emmeans (2024).

  • Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer Nature, 2009).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2009).

  • Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Chung, Y. J., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. C. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78, 685–709 (2013).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar
     

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Series B Stat. Methodol. 73, 3–36 (2011).

    Article 
    MathSciNet 

    Google Scholar
     

  • Rumschlag, S. L. et al. Data and source code for ‘Diverging fish biodiversity trends in cold and warm rivers and streams’. Figshare https://doi.org/10.6084/m9.figshare.28049777 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments