Thursday, September 25, 2025
No menu items!
HomeNatureConvergent evolution of diverse jaw joints in mammaliamorphs

Convergent evolution of diverse jaw joints in mammaliamorphs

  • Crompton, A. The cranial morphology of a new genus and species of ictidosauran. Proc. Zool. Soc. Lond. 130, 183–216 (1958).

    Article 

    Google Scholar
     

  • Kermack, K. A. & Mussett, F. The jaw articulation of the Docodonta and the classification of Mesozoic mammals. Proc. R. Soc. Lond. B 149, 204–215 (1958).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Simpson, G. G. Diagnosis of the classes Reptilia and Mammalia. Evolution 14, 388–392 (1960).

    Article 

    Google Scholar
     

  • Barghusen, H. R. & Hopson, J. A. Dentary–squamosal joint and the origin of mammals. Science 168, 573–575 (1970).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Rowe, T. Definition, diagnosis, and origin of Mammalia. J. Vertebr. Paleontol. 8, 241–264 (1988).

    Article 

    Google Scholar
     

  • Luo, Z.-X., Kielan-Jaworowska, Z. & Cifelli, R. L. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol. Pol. 47, 1–78 (2002).


    Google Scholar
     

  • Rawson, J. R. et al. Brazilian fossils reveal homoplasy in the oldest mammalian jaw joint. Nature 634, 381–388 (2024).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • He, X. & Cai, K. The tritylodont remains from Dashanpu, Zigong. J. Chengdu Coll. Geol. Suppl. 2, 33–45 (1984).


    Google Scholar
     

  • Crompton A, & Parkyn, D. On the lower jaw of Diarthrognathus and the origin of the mammalian lower jaw. Proc. Zool. Soc. Lond. 140, 697–749 (1963).

    Article 

    Google Scholar
     

  • Reed, D., Iriarte‐Diaz, J. & Diekwisch, T. A three dimensional free body analysis describing variation in the musculoskeletal configuration of the cynodont lower jaw. Evol. Dev. 18, 41–53 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lautenschlager, S., Gill, P. G., Luo, Z.-X., Fagan, M. J. & Rayfield, E. J. The role of miniaturization in the evolution of the mammalian jaw and middle ear. Nature 561, 533–537 (2018).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Crompton, A. W. The evolution of the mammalian jaw. Evolution 17, 431–439 (1963).

    Article 

    Google Scholar
     

  • Kermack, K. A., Mussett, F. & Rigney, H. W. The lower jaw of Morganucodon. Zool. J. Linn. Soc. 53, 87–175 (1973).

    Article 

    Google Scholar
     

  • Bramble, D. M. Origin of the mammalian feeding complex: models and mechanisms. Paleobiology 4, 271–301 (1978).

    Article 

    Google Scholar
     

  • Sues, H.-D. Skull and dentition of two tritylodontid synapsids from the Lower Jurassic of western North America. Bull. Mus. Comp. Zool. 151, 217–268 (1986).


    Google Scholar
     

  • Crompton, A. W. & Hylander, W. in The Ecology and Biology of Mammal-like Reptiles (eds Nicholas, H. et al.) 263–282 (1986).

  • Grossnickle, D. M., Weaver, L. N., Jäger, K. R. & Schultz, J. A. The evolution of anteriorly directed molar occlusion in mammals. Zool. J. Linn. Soc. 194, 349–365 (2022).

    Article 

    Google Scholar
     

  • West-Eberhard, M. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).

  • Gilbert, S. F., Bosch, T. C. & Ledón-Rettig, C. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat. Rev. Genet. 16, 611–622 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Müller, G. B. Why an extended evolutionary synthesis is necessary. Interface Focus 7, 20170015 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crompton, A. W. in Studies in Vertebrate Evolution (eds Joysey, K. A. & Kemp, T. S.) 231–251 (Oliver & Boyd, 1972).

  • Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, 2005).

  • Kermack, K. A. The interrelations of early mammals. Zool. J. Linn. Soc. 47, 241–249 (1967).

    Article 

    Google Scholar
     

  • Gow, C. The dentitions of the Tritheledontidae (Therapsida: Cynodontia). Proc. R. Soc. Lond. B 208, 461–481 (1980).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Allin, E. F. & Hopson, J. A. in The Evolutionary Biology of Hearing (eds Webster, D. B. et al.) 587–614 (Springer, 1992).

  • Patterson, B. & Olson, E. C. A triconodontid mammal from the Triassic of Yunnan. In International Colloquium On The Evolution Of Lower And Non-specialized Mammals 129–191 (Koninklijke Vlaamse Academiie voor Wetenschappen, 1961).

  • Kermack, K. A., Mussett, F. & Rigney, H. W. The skull of Morganucodon. Zool. J. Linn. Soc. 71, 1–158 (1981).

    Article 

    Google Scholar
     

  • Mao, F. et al. Fossils document evolutionary changes of jaw joint to mammalian middle ear. Nature 628, 576–581 (2024).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Fourie, S. The jaw articulation of Tritylodontoideus maximus. S. Afr. J. Sci. 64, 255–265 (1968).


    Google Scholar
     

  • Crompton, A. & Sun, A.-L. Cranial structure and relationships of the Liassic mammal Sinoconodon. Zool. J. Linn. Soc. 85, 99–119 (1985).

    Article 

    Google Scholar
     

  • Crompton, A. W. in Functional Morphology in Vertebrate Paleontology (ed. Thomason, T.) 55–75 (Cambridge Univ. Press, 1995).

  • Jasinoski, S. C. & Chinsamy, A. Mandibular histology and growth of the nonmammaliaform cynodont Tritylodon. J. Anat. 220, 564–579 (2012).

    Article 
    PubMed Central 

    Google Scholar
     

  • Allin, E. F. Evolution of the mammalian middle ear. J. Morphol. 147, 403–437 (1975).

    Article 
    PubMed 

    Google Scholar
     

  • Sidor, C. A. Evolutionary trends and the origin of the mammalian lower jaw. Paleobiology 29, 605–640 (2003).

    Article 

    Google Scholar
     

  • Bertossa, R. C. Morphology and behaviour: functional links in development and evolution. Philos. Trans. R. Soc. B 366, 2056–2068 (2011).

    Article 

    Google Scholar
     

  • Newman, S. A. & Müller, G. B. Epigenetic mechanisms of character origination. J. Exp. Zool. 288, 304–317 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Clark, J. M. & Hopson, J. A. Distinctive mammal-like reptile from Mexico and its bearing on the phylogeny of the Tritylodontidae. Nature 315, 398–400 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Lopatin, A. & Agadjanian, A. A tritylodont (Tritylodontidae, Synapsida) from the Mesozoic of Yakutia. Dokl. Biol. Sci. 419, 279–282 (2008).

    Article 

    Google Scholar
     

  • Matsuoka, H., Kusuhashi, N. & Corfe, I. J. A new Early Cretaceous tritylodontid (Synapsida, Cynodontia, Mammaliamorpha) from the Kuwajima Formation (Tetori Group) of central Japan. J. Vertebr. Paleontol. 36, e1112289 (2016).

    Article 

    Google Scholar
     

  • Averianov, A. O. et al. A tritylodontid synapsid from the Middle Jurassic of Siberia and the taxonomy of derived tritylodontids. J. Vertebr. Paleontol. 37, e1363767 (2017).

    Article 

    Google Scholar
     

  • Velazco, P. M., Buczek, A. J. & Novacek, M. J. Two new tritylodontids (Synapsida, Cynodontia, Mammaliamorpha) from the Upper Jurassic, southwestern Mongolia. Am. Mus. Novit. 2017, 3874 (2017).


    Google Scholar
     

  • Panciroli, E., Walsh, S., Fraser, N. C., Brusatte, S. L. & Corfe, I. A reassessment of the postcanine dentition and systematics of the tritylodontid Stereognathus (Cynodontia, Tritylodontidae, Mammaliamorpha), from the Middle Jurassic of the United Kingdom. J. Vertebr. Paleontol. 37, e1351448 (2017).

    Article 

    Google Scholar
     

  • Mao, F., Zhang, C., Liu, C. & Meng, J. Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 592, 577–582 (2021).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Sun, A. L. Skull morphology of the tritylodont genus Bienotheroides of Sichuan. Sci. Sin. B 27, 970–984 (1984).


    Google Scholar
     

  • Liu, L. et al. New discovery of tritylodontids from the Middle Jurassic in Yunyang area, Chongqing and their paleogeographic significance. J. Palaeogeogr. 26, 1–15 (2024).


    Google Scholar
     

  • Crompton, A. W. & Jenkins, F. A. Molar occlusion in Late Triassic mammals. Biol. Rev. 43, 427–458 (1968).

    Article 
    PubMed 

    Google Scholar
     

  • Crompton, A. W. Postcanine occlusion in cynodonts and tritylodontids. Bull. Br. Mus. (Nat. Hist.) 21, 27–71 (1972).


    Google Scholar
     

  • Kalthoff, D. C. et al. Complementary approaches to tooth wear analysis in Tritylodontidae (Synapsida, Mammaliamorpha) reveal a generalist diet. PLoS One 14, e0220188 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopkins, S. S. The evolution of fossoriality and the adaptive role of horns in the Mylagaulidae (Mammalia: Rodentia). Proc. R. Soc. B 272, 1705–1713 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Soares, M. B. & Reichel, M. Massetognathus (Cynodontia, Traversodontidae) from the Santa Maria Formation of Brazil. Rev. Bras. Paleontol. 11, 27–36 (2008).

    Article 

    Google Scholar
     

  • Hopson, J. A. & Kitching, J. W. A revised classification of cynodonts (Reptilia; Therapsida). Palaeontol. Afr. 14, 71–85 (1972).


    Google Scholar
     

  • Hopson, J. & Crompton, A. in Evolutionary Biology (eds Dobzhansky, T. et al.) 16–72 (Appleton-Century-Crofts, 1969).

  • Anthwal, N. & Tucker, A. S. Evolution and development of the mammalian jaw joint: Making a novel structure. Evol. Dev. 25, 3–14 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hunter, J. P. & Jernvall, J. The hypocone as a key innovation in mammalian evolution. Proc. Natl Acad. Sci. USA 92, 10718–10722 (1995).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. New Phytol. 207, 260–274 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Erwin, D. H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. 96, 1–15 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Müller, G. B. & Wagner, G. P. Novelty in evolution: restructuring the concept. Annu. Rev. Ecol. Syst. 22, 229–256 (1991).

    Article 

    Google Scholar
     

  • Arthur, W. Intraspecific variation in developmental characters: the origin of evolutionary novelties. Am. Zool. 40, 811–818 (2000).


    Google Scholar
     

  • Martin, T. & Rauhut, O. W. M. Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J. Vertebr. Paleontol. 25, 414–425 (2005).

    Article 

    Google Scholar
     

  • Morales-García, N. M., Gill, P. G., Janis, C. M. & Rayfield, E. J. Jaw shape and mechanical advantage are indicative of diet in Mesozoic mammals. Commun. Biol. 4, 242 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debuysschere, M., Gheerbrant, E. & Allain, R. Earliest known European mammals: a review of the morganucodonta from Saint-Nicolas-de-Port (Upper Triassic, France). J. Syst. Palaeontol. 13, 825–855 (2015).

    Article 

    Google Scholar
     

  • Gill, P. G. et al. Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512, 303–305 (2014).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Sues, H.-D. The relationships of the Tritylodontidae (Synapsida). Zool. J. Linn. Soc. 85, 205–217 (1985).

    Article 

    Google Scholar
     

  • Cooper, K. L. The case against simplistic genetic explanations of evolution. Development 151, dev203077 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Valen, L. Festschrift: Evolutionary Biology. Vol. 6. Theodosius Dobzhansky, Max K. Hecht and William C. Steere, eds. Science 180, 488 (1973).


    Google Scholar
     

  • Simpson, G. G. A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum (Trustees of the British Museum, 1928).

  • Setoguchi, T., Matsuda, M. & Matsuoka, H. New discovery of an Early Cretaceous tritylodontid (Reptilia, Therapsida) from Japan and the phylogenetic reconstruction of Tritylodontidae based on the dental characters. In Seventh Annual Meeting of the Chinese Society of Vertebrate Paleontology (eds Wang Y. Q. & Deng, T.) 117-124 (China Ocean Press, 1999).

  • Matsuoka, H. in Fossils of the Kuwajima “Kaseki-kabe” (Fossil-bluff): Scientific Report on a Neocomian (Early Cretaceous) Fossil Assemblage from the Kuwajima Formation, Tetori Group, Shiramine, Ishikawa, Japan (ed. Matsuoka, H.) 53–74 (Shiramine Village Board of Education, 2000).

  • Watabe, M., Tsubamoto, T. & Tsogtbaatar, K. A new tritylodontid synapsid from Mongolia. Acta Palaeontol. Pol. 52, 263–274 (2007).


    Google Scholar
     

  • Davis, B. M., Jäger, K. R. K., Rougier, G. W., Trujillo, K. & Chamberlain, K. A morganucodontan mammaliaform from the Upper Jurassic Morrison Formation, Utah, USA. Acta Palaeontol. Pol. 67, 77–93 (2022).

    Article 

    Google Scholar
     

  • Mao, F. et al. Jurassic shuotheriids show earliest dental diversification of mammaliaforms. Nature 628, 569–575 (2024).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Mao, F. et al. Convergent evolution of diverse jaw-joints in mammaliamorph. Zenodo https://doi.org/10.5281/zenodo.16193266 (2025).

  • Luo, Z.-X. Developmental patterns in Mesozoic evolution of mammal ears. Annu. Rev. Ecol. Syst. 42, 355–380 (2011).

    Article 

    Google Scholar
     

  • Soares, M. B., Schultz, C. L. & Horn, B. L. New information on Riograndia guaibensis Bonaparte, Ferigolo & Ribeiro, 2001 (Eucynodontia, Tritheledontidae) from the Late Triassic of southern Brazil: anatomical and biostratigraphic implications. An. Acad. Bras. Cienc. 83, 329–354 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Rodrigues, P. G. et al. Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts. Hist. Biol. 31, 1195–1212 (2019).


    Google Scholar
     

  • Kerber, L. et al. An additional brain endocast of the ictidosaur Riograndia guaibensis (Eucynodontia: Probainognathia): intraspecific variation of endocranial traits. An. Acad. Bras. Cienc. 93, e20200084 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mao, F. & Meng, J. A new haramiyidan mammal from the Jurassic Yanliao Biota and comparisons with other haramiyidans. Zool. J. Linn. Soc. 186, 529–552 (2019).

    Article 

    Google Scholar
     

  • Meng, J., Wang, Y. & Li, C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 181–185 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Mao, F. et al. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367, 305–308 (2020).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Mao, F., Liu, C., Chase, M. H., Smith, A. K. & Meng, J. Exploring ancestral phenotypes and evolutionary development of the mammalian middle ear based on Early Cretaceous Jehol mammals. Natl Sci. Rev. 8, nwaa188 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments