Yamaguchi, S. Large, soft, and polarizable hydride ions sneak around in an oxyhydride. Science 351, 1262–1263 (2016).
Zhang, W., Cao, H. & Chen, P. Hydride ion conductor: a key material for innovative energy storage and conversion. Innov. Mater. 1, 100006 (2023).
Verbraeken, M. C., Cheung, C., Suard, E. & Irvine, J. T. S. High H− ionic conductivity in barium hydride. Nat. Mater. 14, 95–100 (2015).
Zhang, W. et al. Deforming lanthanum trihydride for superionic conduction. Nature 616, 73–76 (2023).
Irvine, G. J., Smith, R. I., Jones, M. O. & Irvine, J. T. S. Order–disorder and ionic conductivity in calcium nitride-hydride. Nat. Commun. 14, 4389 (2023).
Kobayashi, G. et al. Pure H− conduction in oxyhydrides. Science 351, 1314–1317 (2016).
Fukui, K., Iimura, S., Iskandarov, A., Tada, T. & Hosono, H. Room-temperature fast H− conduction in oxygen-substituted lanthanum hydride. J. Am. Chem. Soc. 144, 1523–1527 (2022).
Takeiri, F. et al. Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte. Nat. Mater. 21, 325–330 (2022).
Izumi, Y. et al. Electropositive metal doping into lanthanum hydride for H− conducting solid electrolyte use at room temperature. Adv. Energy Mater. 8, 2301993 (2023).
Ubukata, H. et al. Anion ordering enables fast H− conduction at low temperatures. Sci. Adv. 7, eabf7883 (2021).
Huiberts, J. N. et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature 380, 231–234 (1996).
Vajda, P. in Handbook on the Physics and Chemistry of Rare Earths Vol. 20, chap. 137, pp. 207–292 (eds Gschneidner Jr, K. A. & Eyring, L.) (Elsevier, 1995).
Fukui, K. et al. Characteristic fast H− ion conduction in oxygen-substituted lanthanum hydride. Nat. Commun. 10, 2578 (2019).
Wang, H. L. et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014).
Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).
Verbraeken, M. C., Suard, E. & Irvine, J. T. S. Structural and electrical properties of calcium and strontium hydrides. J. Mater. Chem. 19, 2766–2770 (2009).
Rowberg, A. J. E., Weston, L. & Van de Walle, C. G. Ion-transport engineering of alkaline-earth hydrides for hydride electrolyte applications. Chem. Mater. 30, 5878–5885 (2018).
Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 11 (2013).
Li, Y. et al. Core–shell nanostructured magnesium-based hydrogen storage materials: a critical review. Ind. Chem. Mater. 1, 282–298 (2023).
Gao, Y. et al. Amorphous dual-layer coating: enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte. Adv. Funct. Mater. 31, 10 (2021).
He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).
Chao, B. & Klebanoff, L. in Hydrogen Storage Technology: Materials and Applications (ed. Klebanoff, L.) chap. 5 (Taylor & Francis, 2012).
Orimo, S., Nakamori, Y., Eliseo, J. R., Züttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).
Grochala, W. & Edwards, P. P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104, 1283–1316 (2004).
Bogdanović, B. et al. Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy. J. Alloy. Compd. 350, 246–255 (2003).
Bogdanović, B. & Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloy. Compd. 253–254, 1–9 (1997).
Ren, Z.-H. et al. Single Ti atoms coupled with Ti–O clusters enable low temperature hydrogen cycling by sodium alanate. Rare Met. 43, 2671–2681 (2024).
Liu, W., Liu, P. & Mitlin, D. Tutorial review on structure – dendrite growth relations in metal battery anode supports. Chem. Soc. Rev. 49, 7284–7300 (2020).
Conder, K. & Kaldis, E. High accuracy volumetric determination of hydrogen in rare-earth hydrides. J. Less-Common Met. 146, 205–211 (1989).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matter. 9, 767–808 (1997).
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).
Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).
Binnewies, M. & Milke, E. Thermochemical Data of Elements and Compounds 2nd edn (Wiley, 2002).
Rowberg, A. J., Weston, L. & Van de Walle, C. G. Ion-transport engineering of alkaline-earth hydrides for hydride electrolyte applications. Chem. Mater. 30, 5878–5885 (2018).
Priyanga, G. S., Rajeswarapalanichamy, R. & Iyakutti, K. First principles study of structural, electronic, elastic and magnetic properties of cerium and praseodymium hydrogen system REHx (RE: Ce, Pr and x = 2, 3). J. Rare Earths 33, 289–303 (2015).
Kulikov, N. I. & Tugushev, V. V. An electronic band structure model for the metal-semiconductor transition in cerium-group hydrides. J. Less Common Met. 74, 227–236 (1980).