Friday, September 19, 2025
No menu items!
HomeNatureA room temperature rechargeable all-solid-state hydride ion battery

A room temperature rechargeable all-solid-state hydride ion battery

  • Yamaguchi, S. Large, soft, and polarizable hydride ions sneak around in an oxyhydride. Science 351, 1262–1263 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W., Cao, H. & Chen, P. Hydride ion conductor: a key material for innovative energy storage and conversion. Innov. Mater. 1, 100006 (2023).

    Article 

    Google Scholar
     

  • Verbraeken, M. C., Cheung, C., Suard, E. & Irvine, J. T. S. High H ionic conductivity in barium hydride. Nat. Mater. 14, 95–100 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Deforming lanthanum trihydride for superionic conduction. Nature 616, 73–76 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Irvine, G. J., Smith, R. I., Jones, M. O. & Irvine, J. T. S. Order–disorder and ionic conductivity in calcium nitride-hydride. Nat. Commun. 14, 4389 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, G. et al. Pure H conduction in oxyhydrides. Science 351, 1314–1317 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukui, K., Iimura, S., Iskandarov, A., Tada, T. & Hosono, H. Room-temperature fast H conduction in oxygen-substituted lanthanum hydride. J. Am. Chem. Soc. 144, 1523–1527 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeiri, F. et al. Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte. Nat. Mater. 21, 325–330 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Izumi, Y. et al. Electropositive metal doping into lanthanum hydride for H conducting solid electrolyte use at room temperature. Adv. Energy Mater. 8, 2301993 (2023).

    Article 

    Google Scholar
     

  • Ubukata, H. et al. Anion ordering enables fast H conduction at low temperatures. Sci. Adv. 7, eabf7883 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huiberts, J. N. et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature 380, 231–234 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vajda, P. in Handbook on the Physics and Chemistry of Rare Earths Vol. 20, chap. 137, pp. 207–292 (eds Gschneidner Jr, K. A. & Eyring, L.) (Elsevier, 1995).

  • Fukui, K. et al. Characteristic fast H ion conduction in oxygen-substituted lanthanum hydride. Nat. Commun. 10, 2578 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. L. et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Verbraeken, M. C., Suard, E. & Irvine, J. T. S. Structural and electrical properties of calcium and strontium hydrides. J. Mater. Chem. 19, 2766–2770 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Rowberg, A. J. E., Weston, L. & Van de Walle, C. G. Ion-transport engineering of alkaline-earth hydrides for hydride electrolyte applications. Chem. Mater. 30, 5878–5885 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 11 (2013).

    Article 

    Google Scholar
     

  • Li, Y. et al. Core–shell nanostructured magnesium-based hydrogen storage materials: a critical review. Ind. Chem. Mater. 1, 282–298 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Amorphous dual-layer coating: enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte. Adv. Funct. Mater. 31, 10 (2021).

    ADS 

    Google Scholar
     

  • He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, B. & Klebanoff, L. in Hydrogen Storage Technology: Materials and Applications (ed. Klebanoff, L.) chap. 5 (Taylor & Francis, 2012).

  • Orimo, S., Nakamori, Y., Eliseo, J. R., Züttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grochala, W. & Edwards, P. P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104, 1283–1316 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bogdanović, B. et al. Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy. J. Alloy. Compd. 350, 246–255 (2003).

    Article 

    Google Scholar
     

  • Bogdanović, B. & Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloy. Compd. 253–254, 1–9 (1997).

    Article 

    Google Scholar
     

  • Ren, Z.-H. et al. Single Ti atoms coupled with Ti–O clusters enable low temperature hydrogen cycling by sodium alanate. Rare Met. 43, 2671–2681 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W., Liu, P. & Mitlin, D. Tutorial review on structure – dendrite growth relations in metal battery anode supports. Chem. Soc. Rev. 49, 7284–7300 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conder, K. & Kaldis, E. High accuracy volumetric determination of hydrogen in rare-earth hydrides. J. Less-Common Met. 146, 205–211 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matter. 9, 767–808 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Binnewies, M. & Milke, E. Thermochemical Data of Elements and Compounds 2nd edn (Wiley, 2002).

  • Rowberg, A. J., Weston, L. & Van de Walle, C. G. Ion-transport engineering of alkaline-earth hydrides for hydride electrolyte applications. Chem. Mater. 30, 5878–5885 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Priyanga, G. S., Rajeswarapalanichamy, R. & Iyakutti, K. First principles study of structural, electronic, elastic and magnetic properties of cerium and praseodymium hydrogen system REHx (RE: Ce, Pr and x = 2, 3). J. Rare Earths 33, 289–303 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kulikov, N. I. & Tugushev, V. V. An electronic band structure model for the metal-semiconductor transition in cerium-group hydrides. J. Less Common Met. 74, 227–236 (1980).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments