Friday, September 19, 2025
No menu items!
HomeNatureAtomic-scale imaging of frequency-dependent phonon anisotropy

Atomic-scale imaging of frequency-dependent phonon anisotropy

  • Schubert, M. et al. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ma, W. L. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bubnova, R., Volkov, S., Albert, B. & Filatov, S. Borates—crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations. Crystals 7, 93 (2017).

    Article 

    Google Scholar
     

  • Lin, I. C. et al. Extraction of anisotropic thermal vibration factors for oxygen from the Ti L2,3-edge in SrTiO3. J. Phys. Chem. C 127, 17802–17808 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abramov, Y. A., Tsirelson, V. G., Zavodnik, V. E., Ivanov, S. A. & Brown, I. D. The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction analysis. Acta Crystallogr. B 51, 942–951 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Gong, Y. et al. Polarized Raman scattering of in-plane anisotropic phonon modes in α-MoO3. Adv. Opt. Mater. 10, 2200038 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jauch, W. & Reehuis, M. Electron-density distribution in cubic SrTiO3: a comparative gamma-ray diffraction study. Acta Crystallogr. A 61, 411–417 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X., Gadre, C. A., Aoki, T. & Pan, X. Probing molecular vibrations by monochromated electron microscopy. Trends Chem. 4, 76–90 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeiger, P. M. & Rusz, J. Simulations of spatially and angle-resolved vibrational electron energy loss spectroscopy for a system with a planar defect. Phys. Rev. B 104, 094103 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoglund, E. R. et al. Direct visualization of localized vibrations at complex grain boundaries. Adv. Mater. 35, e2208920 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Haas, B. et al. Atomic-resolution mapping of localized phonon modes at grain boundaries. Nano Lett. 23, 5975–5980 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sirenko, A. A. et al. Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. K. et al. High-kappa perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, W. et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Casella, L. & Zaccone, A. Soft mode theory of ferroelectric phase transitions in the low-temperature phase. J. Phys. Condens. Matter 33, 165401 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burns, G. & Dacol, F. H. Lattice modes in ferroelectric perovskites. III. Soft modes in BaTiO3. Phys. Rev. B 18, 5750–5755 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tian, Z. et al. Preparation of nano BaTiO3‐based ceramics for multilayer ceramic capacitor application by chemical coating method. J. Am. Ceram. Soc. 92, 830–833 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat. Commun. 13, 4332 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, R. et al. Structural phase transitions in SrTiO3 from deep potential molecular dynamics. Phys. Rev. B 105, 064104 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van der Marel, D., Barantani, F. & Rischau, C. W. Possible mechanism for superconductivity in doped SrTiO3. Phys. Rev. Res. 1, 013003 (2019).

    Article 

    Google Scholar
     

  • Niedermeier, C. A. et al. Phonon scattering limited mobility in the representative cubic perovskite semiconductors SrGeO3, BaSnO3, and SrTiO3. Phys. Rev. B 101, 125206 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, J., Huang, Z., Gao, W., Zhang, G. & Chi, M. Atomic resolution cryogenic 4D-STEM imaging via robust distortion correction. ACS Nano 17, 11327–11334 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeiger, P. M. & Rusz, J. Efficient and versatile model for vibrational STEM-EELS. Phys. Rev. Lett. 124, 025501 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeiger, P. M. & Rusz, J. Frequency-resolved frozen phonon multislice method and its application to vibrational electron energy loss spectroscopy using parallel illumination. Phys. Rev. B 104, 104301 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cancellieri, C. et al. Polaronic metal state at the LaAlO3/SrTiO3 interface. Nat. Commun. 7, 10386 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krivanek, O. et al. Damage-free analysis of biological materials by vibrational spectroscopy in the EM. Microsc. Microanal. 26, 108–110 (2020).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Spiecker, E. Determination of crystal polarity from bend contours in transmission electron microscope images. Ultramicroscopy 92, 111–132 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, X. et al. Curvature-induced one-dimensional phonon polaritons at edges of folded boron nitride sheets. Nano Lett. 22, 9319–9326 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Culjak, I., Abram, D., Pribanic, T., Dzapo, H. & Cifrek, M. A brief introduction to OpenCV. In Proc. 35th International Convention MIPRO (ed. Biljanović, P.) 1725–1730 (IEEE, 2012).

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Carreras, A. phonoLAMMPS Documentation. GitHub https://github.com/abelcarreras/phonolammps (2023).

  • Carreras, A., Togo, A. & Tanaka, I. DynaPhoPy: a code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn 92, 012001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 253, 107206 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Servoin, J. L., Luspin, Y. & Gervais, F. Infrared dispersion in SrTiO3 at high temperature. Phys. Rev. B 22, 5501–5506 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stirling, W. G. Neutron inelastic scattering study of the lattice dynamics of strontium titanate: harmonic models. J. Phys. C 5, 2711 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, J.-J., Hellman, O. & Bernardi, M. Electron-phonon scattering in the presence of soft modes and electron mobility in SrTiO3 perovskite from first principles. Phys. Rev. Lett. 121, 226603 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalabrin, A., Chaves, A. S., Shim, D. S. & Porto, S. P. S. Temperature dependence of the A1 and E optical phonons in BaTiO3. Phys. Status Solidi B 79, 731–742 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hermet, P., Veithen, M. & Ghosez, P. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory. J. Phys. Condens. Matter 21, 215901 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evarestov, R. A. & Bandura, A. V. First-principles calculations on the four phases of BaTiO3. J. Comput. Chem. 33, 1123–1130 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ehsan, S., Arrigoni, M., Madsen, G. K. H., Blaha, P. & Tröster, A. First-principles self-consistent phonon approach to the study of the vibrational properties and structural phase transition of BaTiO3. Phys. Rev. B 103, 094108 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments