Aboagye, S. et al. Multi-band wireless communication networks: fundamentals, challenges, and resource allocation. IEEE Trans. Commun. 72, 4333–4383 (2024).
Chen, S. et al. Vision, requirements, and technology trend of 6G: how to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 27, 218–228 (2020).
Saad, W., Bennis, M. & Chen, M. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw. 34, 134–142 (2019).
Akyildiz, I. F., Kak, A. & Nie, S. 6G and beyond: the future of wireless communications systems. IEEE Access 8, 133995–134030 (2020).
Akyildiz, I. F., Han, C., Hu, Z., Nie, S. & Jornet, J. M. Terahertz band communication: an old problem revisited and research directions for the next decade. IEEE Trans. Commun. 70, 4250–4285 (2022).
Chen, X. et al. Massive access for 5G and beyond. IEEE J. Sel. Areas Commun. 39, 615–637 (2021).
Wang, W. et al. On-chip topological beamformer for multi-link terahertz 6G to XG wireless. Nature 632, 522–527 (2024).
Rappaport, T. S. et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019).
Rappaport, T. S. et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Trans. Antennas Propag. 65, 6213–6230 (2017).
Wang, C. X. et al. 6G wireless channel measurements and models: trends and challenges. IEEE Veh. Technol. Mag. 15, 22–32 (2020).
Chowdhury, M. Z., Shahjalal, M., Ahmed, S. & Jang, Y. M. 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 1, 957–975 (2020).
Letaief, K. B., Chen, W., Shi, Y., Zhang, J. & Zhang, Y.-J. A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57, 84–90 (2019).
Jiang, W., Han, B., Habibi, M. A. & Schotten, H. D. The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc. 2, 334–366 (2021).
Maleki, L. The optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).
Jia, S. et al. Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications. Nat. Commun. 13, 1388 (2022).
Dat, P. T. et al. Terahertz signal transparent relay and switching using photonic technology. J. Lightwave Technol. 42, 1173–1182 (2024).
Salamin, Y. et al. Microwave plasmonic mixer in a transparent fibre–wireless link. Nat. Photon. 12, 749–753 (2018).
Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).
Heffernan, B. M. et al. 60 Gbps real-time wireless communications at 300 GHz carrier using a Kerr microcomb-based source. APL Photonics 8, 066106 (2023).
Sun, S. et al. Integrated optical frequency division for microwave and mmWave generation. Nature 627, 540–545 (2024).
Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).
Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).
Ummethala, S. et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photon. 13, 519–524 (2019).
Harter, T. et al. Wireless THz link with optoelectronic transmitter and receiver. Optica 6, 1063–1070 (2019).
Zhang, C. et al. Clone-comb-enabled high-capacity digital-analogue fronthaul with high-order modulation formats. Nat. Photon. 17, 1000–1008 (2023).
Dat, P. T. et al. Transparent fiber–millimeter-wave–fiber system in 100-GHz band using optical modulator and photonic down-conversion. J. Lightwave Technol. 40, 1483–1493 (2022).
Tao, Z. et al. Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication. Photonics Res. 11, 682–694 (2023).
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Feng, H. et al. On-chip optical vector analysis based on thin-film lithium niobate single-sideband modulators. Adv. Photonics 6, 066006 (2024).
Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357–363 (2021).
Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).
Xu, M. et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11, 3911 (2020).
He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s- 1 and beyond. Nat. Photon. 13, 359–364 (2019).
Zhang, W. & Yao, J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwave Technol. 36, 4655–4663 (2018).
Ma, R. et al. Ka-band thin film lithium niobate photonic integrated optoelectronic oscillator. Photonics Res. 12, 1283–1293 (2024).
Tao, Z. et al. Versatile photonic molecule switch in multimode microresonators. Light Sci. Appl. 13, 51 (2024).
Feng, H. et al. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 10, 2366–2373 (2022).
Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 13, 1725–1735 (1996).
Peng, H. et al. High sensitivity microwave phase noise analyzer based on a phase locked optoelectronic oscillator. Opt. Express 27, 18910–18927 (2019).
Yu, Y. et al. Frequency stabilization of the tunable optoelectronic oscillator based on anultra-high-q microring resonator. IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2019).
Singya, P. K., Shaik, P., Kumar, N., Bhatia, V. & Alouini, M.-S. A survey on higher-order QAM constellations: technical challenges, recent advances, and future trends. IEEE Open J. Commun. Soc. 2, 617–655 (2021).
Watteyne, T., Lanzisera, S., Mehta, A. & Pister, K. S. Mitigating multipath fading through channel hopping in wireless sensor networks. In Proc. 2010 IEEE International Conference on Communications 1–5 (IEEE, 2010).
Hwang, T., Yang, C., Wu, G., Li, S. & Li, G. Y. OFDM and its wireless applications: a survey. IEEE Trans. Veh. Technol. 58, 1673–1694 (2008).
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242–352 (2021).
Li, M. et al. Heterogeneously-integrated self-injection locked lasers on thin film lithium niobate. In Proc. 2024 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2024).
Desiatov, B. & Lončar, M. Silicon photodetector for integrated lithium niobate photonics. Appl. Phys. Lett. 115, 121108 (2019).
Zhang, Y. et al. Monolithic lithium niobate photonic chip for efficient terahertz-optic modulation and terahertz generation. Preprint at https://doi.org/10.48550/arXiv.2406.19620 (2024).
Umezawa, T. et al. Bias-free operational UTC-PD above 110 GHz and its application to high baud rate fixed-fiber communication and W-band photonic wireless communication. J. Lightwave Technol. 34, 3138–3147 (2016).
Zhu, X. et al. Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate. Photonics Res. 12, A63–A68 (2024).
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-q microresonators. Nat. Photon. 15, 346–353 (2021).
Zhang, X. et al. High-coherence parallelization in integrated photonics. Nat. Commun. 15, 7892 (2024).
Tao, Z. et al. Data for “Ultrabroadband on-chip photonics for full-spectrum wireless communications”. Zenodo https://doi.org/10.5281/zenodo.15876445 (2025).
D’heer, C. & Reynaert, P. A fully integrated 135-GHz direct-digital 16-QAM wireless and dielectric waveguide link in 28-nm CMOS. IEEE J. Solid State Circuits 59, 889–907 (2023).
Guan, P. et al. A fully integrated QPSK/16-QAM D-band CMOS transceiver with mixed-signal baseband circuitry realizing digital interfaces. IEEE J Solid State Circuits 59, 3123–3141 (2024).
Mohammadnezhad, H., Wang, H., Cathelin, A. & Heydari, P. A 115–135-GHz 8PSK receiver using multi-phase RF-correlation-based direct-demodulation method. IEEE J. Solid State Circuits 54, 2435–2448 (2019).
Townley, A. et al. A fully integrated, dual channel, flip chip packaged 113 GHz transceiver in 28 nm CMOS supporting an 80 Gb/s wireless link. In Proc. 2020 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2020).
Deng, W. et al. An energy-efficient 10-Gb/s CMOS millimeter-wave transceiver with direct-modulation digital transmitter and I/Q phase-coupled frequency synthesizer. IEEE J. Solid State Circuits 55, 2027–2042 (2020).
Dasgupta, K. et al. A 60-GHz transceiver and baseband with polarization MIMO in 28-nm CMOS. IEEE J. Solid State Circuits 53, 3613–3627 (2018).
Pang, J. et al. A 50.1-Gb/s 60-GHz CMOS transceiver for IEEE 802.11ay with calibration of LO feedthrough and I/Q imbalance. IEEE J. Solid State Circuits 54, 1375–1390 (2019).
Deng, W. et al. A D-band joint radar-communication CMOS transceiver. IEEE J. Solid State Circuits 58, 411–427 (2022).
Lu, L. et al. Design of a 60-GHz joint radar–communication transceiver with a highly reused architecture utilizing reconfigurable dual-mode Gilbert cells. IEEE Trans. Microw. Theory Tech. 73, 245–257 (2025).
Grzyb, J., Rodrı́guez-Vázquez, P., Malz, S., Andree, M. & Pfeiffer, U. R. A SiGe HBT 215–240 GHz DCA IQ TX/RX chipset with built-in test of USB/LSB RF asymmetry for 100+ Gb/s data rates. IEEE Trans. Microw. Theory Tech. 70, 1696–1714 (2021).
Lee, S. et al. An 80-Gb/s 300-GHz-band single-chip CMOS transceiver. IEEE J. Solid State Circuits 54, 3577–3588 (2019).