Thursday, August 28, 2025
No menu items!
HomeNatureThioester-mediated RNA aminoacylation and peptidyl-RNA synthesis in water

Thioester-mediated RNA aminoacylation and peptidyl-RNA synthesis in water

  • Rodnina, M. V. Translation in prokaryotes. Cold Spring Harb. Perspect. Biol. 10, a032664 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez, M. A. R. & Ibba, M. Aminoacyl-tRNA synthetases. RNA 26, 910–936 (2020).

    CAS 

    Google Scholar
     

  • Weber, A. L. & Lacey, J. C. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides. J. Mol. Evol. 6, 309–320 (1975).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, A. L. & Orgel, L. E. Amino acid activation with adenosine 5′-phosphorimidazolide. J. Mol. Evol. 11, 9–16 (1978).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Radakovic, A. et al. A potential role for RNA aminoacylation prior to its role in peptide synthesis. Proc. Natl Acad. Sci. USA 121, e2410206121 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiegelman, S., Haruna, I., Holland, I. B., Beaudreau, G. & Mills, D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc. Natl Acad. Sci. USA 54, 919–927 (1965).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Voytek, S. B. & Joyce, G. F. Emergence of a fast-reacting ribozyme that is capable of undergoing continuous evolution. Proc. Natl Acad. Sci. USA 104, 15288–15293 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichihashi, N. et al. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nat. Commun. 4, 2494 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rout, S. K., Friedmann, M. P., Riek, R. & Greenwald, J. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 9, 234 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breaker, R. R. & Joyce, G. F. The expanding view of RNA and DNA function. Chem. Biol. 21, 1059–1065 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K. & Schimmel, P. Chiral-selective aminoacylation of an RNA minihelix. Science 305, 1253–1253 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, L.-F., Su, M., Liu, Z., Bjork, S. J. & Sutherland, J. D. Interstrand aminoacyl transfer in a tRNA acceptor stem-overhang mimic. J. Am. Chem. Soc. 143, 11836–11842 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turk, R. M., Illangasekare, M. & Yarus, M. Catalyzed and spontaneous reactions on ribozyme ribose. J. Am. Chem. Soc. 133, 6044–6050 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Biron, J.-P., Parkes, A. L., Pascal, R. & Sutherland, J. D. Expeditious, potentially primordial, aminoacylation of nucleotides. Angew. Chem. Int. Ed. 44, 6731–6734 (2005).

    CAS 

    Google Scholar
     

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 

    Google Scholar
     

  • De Duve, C. in The Molecular Origins of Life: Assembling Pieces of the Puzzle (ed. Brack, A.) 219–236 (Cambridge Univ. Press, 1998).

  • Goldford, J. E., Hartman, H., Smith, T. F. & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Fairchild, J., Islam, S., Singh, J., Bučar, D. K. & Powner, M. W. Prebiotically plausible chemoselective pantetheine synthesis in water. Science 383, 911–918 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gless, B. H., Schmied, S. H., Bejder, B. S. & Olsen, C. A. Förster resonance energy transfer assay for investigating the reactivity of thioesters in biochemistry and native chemical ligation. JACS Au 3, 1443–1451 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, A. L. & Orgel, L. E. The formation of peptides from glycine thioesters. J. Mol. Evol. 13, 193–202 (1979).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thoma, B. & Powner, M. W. Selective synthesis of lysine peptides and the prebiotically plausible synthesis of catalytically active diaminopropionic acid peptide nitriles in water. J. Am. Chem. Soc. 145, 3121–3130 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ninomiya, K., Minohata, T., Nishimura, M. & Sisido, M. In situ chemical aminoacylation with amino acid thioesters linked to a peptide nucleic acid. J. Am. Chem. Soc. 126, 15984–15989 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, N. & Huang, F. Ribozyme-catalyzed aminoacylation from CoA thioesters. Biochemistry 44, 4582–4590 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 5, 1011–1018 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Fang, L., Xiao, L., Jun, Y. W., Onishi, Y. & Kool, E. T. Reversible 2′-OH acylation enhances RNA stability. Nat. Chem. 15, 1296–1305 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Yarus, M. A specific amino acid binding site composed of RNA. Science 240, 1751–1758 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burd, G. C. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aumiller, W. & Keating, C. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Deng, M., Yu, J. & Blackmond, D. G. Symmetry breaking and chiral amplification in prebiotic ligation reactions. Nature 626, 1019–1024 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Calendar, R. & Berg, P. d-tyrosyl RNA: formation, hydrolysis and utilization for protein synthesis. J. Mol. Biol. 26, 39–54 (1967).

    CAS 
    PubMed 

    Google Scholar
     

  • Pawar, K. I. et al. Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. eLife 6, e24001 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjichristidis, N., Iatrous, H., Pitsikalis, M. & Sakellariou, G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chem. Rev. 109, 5528–5578 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, J. et al. Prebiotic catalytic peptide ligation yields proteinogenic peptides by intramolecular amide catalyzed hydrolysis facilitating regioselective lysine ligation in neutral water. J. Am. Chem. Soc. 144, 10151–10155 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barat, A. & Powner, M. W. Spontaneous peptide ligation mediated by cysteamine. JACS Au 4, 1752–1757 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaturvedi, R. K., MacMahon, A. E. & Schmir, G. L. The hydrolysis of thioimidate esters. Tetrahedral intermediates and general acid catalysis. J. Am. Chem. Soc. 89, 6984–6993 (1967).

    CAS 

    Google Scholar
     

  • Van den Berg, L. The effect of addition of sodium and potassium chloride to the reciprocal system: KH2PO4-Na2HPO4-H2O on pH and composition during freezing. Arch. Biochem. Biophys. 84, 305–315 (1959).

    PubMed 

    Google Scholar
     

  • Jash, B., Tremmel, P., Jovanovic, D. & Richert, C. Single nucleotide translation without ribosomes. Nat. Chem. 13, 751–757 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Reußwig, S. G. & Richert, C. Ribosome-free translation up to pentapeptides via template walk on RNA sequences. Angew. Chem. Int. Ed. 63, e202410317 (2024).


    Google Scholar
     

  • Toner, J. D. & Catling, D. C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl Acad. Sci. USA 117, 883–888 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments