Lenton, T. M. et al. The Global Tipping Points Report 2023 (Univ. of Exeter, 2023). This report assesses Earth system and social tipping points, aiming to inform decision-makers and the public about the risks and opportunities associated with the urgent global challenges of climate change and biodiversity loss.
Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).
Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).
Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evolut. Systemat. 35, 557–581 (2004).
Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
Kopp, R. E. et al. ‘Tipping points’ confuse and can distract from urgent climate action. Nat. Clim. Change 15, 29–36 (2025). This article critiques the tipping points framework by examining the history and effectiveness of this framework, and provides recommendations for clearer and more specific descriptions of abrupt changes to better inform decision making.
IPCC. Summary for Policymakers, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner H.-O. et al.) (Cambridge Univ. Press, 2019).
Meredith, M. et al. Polar Regions, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 203–320 (Cambridge Univ. Press, 2019).
Fox-Kemper, B. et al. Ocean, Cryosphere and Sea Level Change, in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).
Constable, A. J. et al. Cross-Chapter Paper 6: Polar Regions, in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2319–2368 (Cambridge Univ. Press, 2022).
Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J. & Phillips, T. Recent changes in Antarctic Sea Ice. Phil. Trans. R. Soc. A 373, 20140163 (2015).
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).
Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).
Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D. & Chang, K.-L. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548 (2020).
Schroeter, S., O’Kane, T. J. & Sandery, P. A. Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode. The Cryosphere 17, 701–717 (2023).
Siegert, M. J. et al. Antarctic extreme events. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2023.1229283 (2023).
Gilbert, E. & Holmes, C. 2023’s Antarctic sea ice extent is the lowest on record. Weather 79, 46–51 (2024).
Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023). This influential study demonstrates that Antarctic sea ice has shifted to a new low sea-ice state, and connects this regime shift to the confluence with subsurface warming of the Southern Ocean.
Hobbs, W. et al. Observational evidence for a regime shift in summer Antarctic sea ice. J. Clim. 37, 2263–2275 (2024).
Fogt, R. L., Sleinkofer, A. M., Raphael, M. N. & Handcock, M. S. A regime shift in seasonal total Antarctic sea ice extent in the twentieth century. Nat. Clim. Change 12, 54–62 (2022). This study developed an observation-based reconstruction of Antarctic sea-ice extent that demonstrated the increase in Antarctic sea ice during the satellite era was unusual in a twentieth century context, and also provides a basis for demonstrating the extraordinary nature of abrupt sea-ice loss since 2014.
Dalaiden, Q. et al. An unprecedented sea ice retreat in the Weddell Sea driving an overall decrease of the Antarctic sea-ice extent over the 20th century. Geophys. Res. Lett. 50, e2023GL104666 (2023).
Goosse, H., Dalaiden, Q., Feba, F., Mezzina, B. & Fogt, R. L. A drop in Antarctic sea ice extent at the end of the 1970s. Commun. Earth Environ. 5, 628 (2024).
Raphael, M. N., Maierhofer, T. J., Fogt, R. L., Hobbs, W. R. & Handcock, M. S. A twenty-first century structural change in Antarctica’s sea ice system. Commun. Earth Environ. 6, 131 (2025).
Maierhofer, T. J., Raphael, M. N., Fogt, R. L. & Handcock, M. S. A Bayesian model for 20th century Antarctic sea ice extent reconstruction. Earth Space Sci. 11, e2024EA003577 (2024).
Morioka, Y. et al. Antarctic sea ice multidecadal variability triggered by Southern Annular Mode and deep convection. Commun. Earth Environ. 5, 633 (2024).
Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11, 680–688 (2021).
Dakos, V. et al. Tipping point detection and early warnings in climate, ecological, and human systems. Earth Syst. Dynam. 15, 1117–1135 (2024).
Espinosa, Z. I., Blanchard-Wrigglesworth, E. & Bitz, C. M. Understanding the drivers and predictability of record low Antarctic sea ice in austral winter 2023. Commun. Earth Environ. 5, 723 (2024).
Zhang, L. et al. The relative role of the subsurface Southern Ocean in driving negative Antarctic Sea ice extent anomalies in 2016–2021. Commun. Earth Environ. 3, 302 (2022).
Himmich, K. et al. Thermodynamics drive post-2016 changes in the Antarctic sea ice seasonal cycle. J. Geophys. Res. Oceans 129, e2024JC021112 (2024).
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
Chamberlain, M. A., Ziehn, T. & Law, R. M. The Southern Ocean as the climate’s freight train—driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5. Biogeosciences 21, 3053–3073 (2024).
King, A. D. et al. Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5. Earth Syst. Dynam. 15, 1353–1383 (2024).
Morioka, Y. et al. Role of anthropogenic forcing in Antarctic sea ice variability simulated in climate models. Nat. Commun. 15, 10511 (2024).
King, A. D., Abram, N. J., Alastrué de Asenjo, E. & Ziehn, T. ESD Ideas: Extended net zero simulations are critical for informed decision making. EGUsphere https://doi.org/10.5194/egusphere-2025-903 (2025).
Holmes, C. R., Bracegirdle, T. J., Holland, P. R., Stroeve, J. & Wilkinson, J. New perspectives on the skill of modelled sea ice trends in light of recent Antarctic sea ice loss. Cryosphere 18, 5641–5652 (2024). This paper demonstrates that recent unprecedented Antarctic sea-ice loss challenges the skill of current climate models in accurately predicting sea-ice trends, emphasizing the urgent need for model refinements to better capture potential abrupt changes.
Duspayev, A., Flanner, M. G. & Riihelä, A. Earth’s sea ice radiative effect from 1980 to 2023. Geophys. Res. Lett. 51, e2024GL109608 (2024).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Vogt, L. et al. Increased future ocean heat uptake constrained by Antarctic sea ice extent. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3982037/v2 (2025).
England, M. R., Polvani, L. M., Sun, L. & Deser, C. Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 13, 275–281 (2020).
Ayres, H. C., Screen, J. A., Blockley, E. W. & Bracegirdle, T. J. The coupled atmosphere–ocean response to Antarctic sea ice loss. J. Clim. 35, 4665–4685 (2022).
Zhou, S. et al. Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes. Nat. Clim. Change 13, 701–709 (2023).
Silvano, A. et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat. Geosci. 13, 780–786 (2020).
Josey, S. A. et al. Record-low Antarctic sea ice in 2023 increased ocean heat loss and storms. Nature 636, 635–639 (2024).
Reid, P. A. & Massom, R. A. Change and variability in Antarctic coastal exposure, 1979–2020. Nat. Commun. 13, 1164 (2022).
Fretwell, P. T., Boutet, A. & Ratcliffe, N. Record low 2022 Antarctic sea ice led to catastrophic breeding failure of emperor penguins. Commun. Earth Environ. 4, 273 (2023). The catastrophic regional-scale breeding failure of emperor penguins in 2022 due to record low Antarctic sea ice underscores the vulnerability of polar ecosystems to climate-driven abrupt change, highlighting the potential for irreversible ecological shifts.
Kawaguchi, S. et al. Climate change impacts on Antarctic krill behaviour and population dynamics. Nat. Rev. Earth Environ. 5, 43–58 (2024).
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).
Abernathey, R. P. et al. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9, 596–601 (2016).
Heuzé, C. Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models. Ocean Sci. 17, 59–90 (2021).
Purich, A. & England, M. H. Historical and future projected warming of Antarctic Shelf Bottom Water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).
de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Change 4, 278–282 (2014).
Lago, V. & England, M. H. Projected slowdown of Antarctic Bottom Water formation in response to amplified meltwater contributions. J. Clim. 32, 6319–6335 (2019).
Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023). Using a high-resolution ocean model that captures the four known regions of Antarctic Bottom Water formation, this study projects a 40% slowdown of the Antarctic Overturning Circulation by 2050 in response to expected increases in Antarctic meltwater.
Huneke, W. G. C., Hobbs, W. R., Klocker, A. & Naughten, K. A. Dynamic response to ice shelf basal meltwater relevant to explain observed sea ice trends near the Antarctic Continental Shelf. Geophys. Res. Lett. 50, e2023GL105435 (2023).
Jacobs, S. S., Giulivi, C. F. & Dutrieux, P. Persistent Ross Sea freshening from imbalance West Antarctic ice shelf melting. J. Geophys. Res. Oceans 127, e2021JC017808 (2022).
Gunn, K. L., Rintoul, S. R., England, M. H. & Bowen, M. M. Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin. Nat. Clim. Change 13, 537–544 (2023). Observations from the Australian Antarctic Basin show that over recent decades there has been a reduction in Antarctic Bottom Water transport, coincident with a strong freshening on the continental shelf; this finding is reinforced by equivalent observations from the Weddell sector (ref. 43).
Schmidt, C., Morrison, A. K. & England, M. H. Wind- and sea-ice-driven interannual variability of Antarctic Bottom Water formation. J. Geophys. Res. Oceans 128, e2023JC019774 (2023).
Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013).
Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).
Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the Last Deglaciation. Science 335, 557–561 (2012).
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).
Rae, J. W. B. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).
Huang, H., Gutjahr, M., Eisenhauer, A. & Kuhn, G. No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum. Nat. Commun. 11, 424 (2020).
Weber, M. E. et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510, 134–138 (2014).
Yeung, N. K. H., Menviel, L., Meissner, K. J. & Sikes, E. Assessing the spatial origin of meltwater pulse 1A using oxygen-isotope fingerprinting. Paleoceanogr. Paleoclimatol. 34, 2031–2046 (2019).
Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).
Turney, C. S. M. et al. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proc. Natl Acad. Sci. USA 117, 3996–4006 (2020).
Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020).
Hayes, C. T. et al. A stagnation event in the deep South Atlantic during the last interglacial period. Science 346, 1514–1517 (2014).
Glasscock, S. K., Hayes, C. T., Redmond, N. & Rohde, E. Changes in Antarctic Bottom Water formation during interglacial periods. Paleoceanogr. Paleoclimatol. 35, e2020PA003867 (2020).
Rohling, E. J. et al. Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand. Nat. Commun. 10, 5040 (2019).
Yeung, N. K.-H. et al. Last Interglacial subsurface warming on the Antarctic shelf triggered by reduced deep-ocean convection. Commun. Earth Environ. 5, 212 (2024).
Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018). Global climate impacts of Antarctic meltwater are shown to be far-reaching using a coupled climate model, identifying global surface temperature changes, shifting tropical precipitation and subsurface warming around the Antarctic margins that may accelerate ice shelf basal melting.
Ribeiro, N. et al. Warm modified Circumpolar Deep Water intrusions drive ice shelf melt and inhibit dense shelf water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 126, e2020JC016998 (2021).
Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016).
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).
Naughten, K. A., Holland, P. R. & De Rydt, J. Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century. Nat. Clim. Change 13, 1222–1228 (2023). Regional ocean modelling finds rapid ocean warming in the Amundsen Sea for a range of different emission scenarios, suggesting that future mitigation efforts cannot prevent ocean-driven melting of ice shelves in this region.
Ribeiro, N. et al. Oceanic regime shift to a warmer continental shelf adjacent to the Shackleton Ice Shelf, East Antarctica. J. Geophys. Res. Oceans 128, e2023JC019882 (2023).
Mathiot, P. & Jourdain, N. C. Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario. Ocean Sci. 19, 1595–1615 (2023).
Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539 (2016).
Long, M. C. et al. Strong Southern Ocean carbon uptake evident in airborne observations. Science 374, 1275–1280 (2021).
Liu, Y., Moore, J. K., Primeau, F. & Wang, W. L. Reduced CO2 uptake and growing nutrient sequestration from slowing overturning circulation. Nat. Clim. Change 13, 83–90 (2023).
Dong, Y., Pauling, A. G., Sadai, S. & Armour, K. C. Antarctic ice-sheet meltwater reduces transient warming and climate sensitivity through the sea-surface temperature pattern effect. Geophys. Res. Lett. 49, e2022GL101249 (2022).
Shin, S.-J. et al. Southern Ocean control of 2 °C global warming in climate models. Earth Future 11, e2022EF003212 (2023).
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).
Rosier, S. H. R. et al. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021).
Pattyn, F. & Morlighem, M. The uncertain future of the Antarctic Ice Sheet. Science 367, 1331–1335 (2020).
Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2006JF000664 (2007).
Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).
Stokes, C. R. et al. Response of the East Antarctic Ice Sheet to past and future climate change. Nature 608, 275–286 (2022). This paper reveals the potential vulnerability of the East Antarctic Ice Sheet to past and future climate change, highlighting its contribution to sea-level rise and underscoring the importance of understanding ice sheet dynamics in the context of climate tipping points.
Dutton, A. & Lambeck, K. Ice volume and sea level during the Last Interglacial. Science 337, 216–219 (2012).
Dumitru, O. A. et al. Last interglacial global mean sea level from high-precision U-series ages of Bahamian fossil coral reefs. Quat. Sci. Rev. 318, 108287 (2023).
Lau, S. C. Y. et al. Genomic evidence for West Antarctic Ice Sheet collapse during the Last Interglacial. Science 382, 1384–1389 (2023). This study uses novel genetic indicators to infer that the West Antarctic Ice Sheet underwent major collapse during the last warm period in Earth’s past when global temperatures were similar to present day.
Wolff, E. W. et al. The Ronne Ice Shelf survived the last interglacial. Nature 638, 133–137 (2025).
Iizuka, M. et al. Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial. Nat. Commun. 14, 2129 (2023).
Hutchinson, D. K., Menviel, L., Meissner, K. J. & Hogg, A. M. East Antarctic warming forced by ice loss during the Last Interglacial. Nat. Commun. 15, 1026 (2024).
DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).
Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).
Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).
Shepherd, A. et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).
Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).
Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).
Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).
Milillo, P. et al. Rapid glacier retreat rates observed in West Antarctica. Nat. Geosci. 15, 48–53 (2022).
Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).
Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).
Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).
Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).
Christie, F. D. W., Steig, E. J., Gourmelen, N., Tett, S. F. B. & Bingham, R. G. Inter-decadal climate variability induces differential ice response along Pacific-facing West Antarctica. Nat. Commun. 14, 93 (2023).
Hill, E. A. et al. The stability of present-day Antarctic grounding lines, part 1: No indication of marine ice sheet instability in the current geometry. Cryosphere 17, 3739–3759 (2023).
Reese, R. et al. The stability of present-day Antarctic grounding lines, part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded. Cryosphere 17, 3761–3783 (2023). This paper investigates the committed evolution of Antarctic grounding lines under the present-day climate, finding irreversible retreat in the Amundsen Sea Embayment is initiated within centuries but is not yet inevitable.
Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).
Möller, T. et al. Achieving net zero greenhouse gas emissions critical to limit climate tipping risks. Nat. Commun. 15, 6192 (2024).
Seroussi, H. et al. Evolution of the Antarctic Ice Sheet over the next three centuries from an ISMIP6 model ensemble. Earth Future 12, e2024EF004561 (2024). This contribution provides multi-century projections of the Antarctic Ice Sheet evolution using an ensemble of ice sheet models, revealing a sharp increase in mass loss and uncertainty from 2100 associated with anthropogenic climate change.
Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).
Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).
Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).
De Angelis, H. & Skvarca, P. Glacier surge after ice shelf collapse. Science 299, 1560–1562 (2003).
Wuite, J. et al. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. Cryosphere 9, 957–969 (2015).
Rott, H. et al. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. Cryosphere 12, 1273–1291 (2018).
Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).
Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).
Dell, R. L., Willis, I. C., Arnold, N. S., Banwell, A. F. & de Roda Husman, S. Substantial contribution of slush to meltwater area across Antarctic ice shelves. Nat. Geosci. 17, 624–630 (2024).
Walker, C. C. et al. Multi-decadal collapse of East Antarctica’s Conger–Glenzer Ice Shelf. Nat. Geosci. 17, 1240–1248 (2024).
Wille, J. D. et al. The extraordinary March 2022 East Antarctica “heat” wave. Part II: Impacts on the Antarctic Ice Sheet. J. Clim. 37, 779–799 (2024).
Hill, E. A., Gudmundsson, G. H. & Chandler, D. M. Ocean warming as a trigger for irreversible retreat of the Antarctic ice sheet. Nat. Clim. Change 14, 1165–1171 (2024).
Ben-Yami, M., Skiba, V., Bathiany, S. & Boers, N. Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation. Nat. Commun. 14, 8344 (2023).
Smith, R. S. et al. Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic Ice Sheets. J. Adv. Model. Earth Syst. 13, e2021MS002520 (2021).
Zhou, Q. et al. Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet-ocean modelling. Geosci. Model Dev. Discuss. 17, 8243–8265 (2024).
Miles, B. W. J. & Bingham, R. G. Progressive unanchoring of Antarctic ice shelves since 1973. Nature 626, 785–791 (2024).
Bradley, A. T. & Hewitt, I. J. Tipping point in ice-sheet grounding-zone melting due to ocean water intrusion. Nat. Geosci. 17, 631–637 (2024).
Larour, E. et al. Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science 364, eaav7908 (2019).
Kachuck, S. B., Martin, D. F., Bassis, J. N. & Price, S. F. Rapid viscoelastic deformation slows marine ice sheet instability at Pine Island Glacier. Geophys. Res. Lett. 47, e2019GL086446 (2020).
Houriez, L. et al. Capturing solid earth and ice sheet interactions: insights from reinforced ridges in Thwaites Glacier. EGUsphere https://doi.org/10.5194/egusphere-2024-4136 (2025).
Wunderling, N., Donges, J. F., Kurths, J. & Winkelmann, R. Interacting tipping elements increase risk of climate domino effects under global warming. Earth Syst. Dynam. 12, 601–619 (2021).
Rosser, J. P., Winkelmann, R. & Wunderling, N. Polar ice sheets are decisive contributors to uncertainty in climate tipping projections. Commun. Earth Environ. 5, 702 (2024).
Seroussi, H. et al. Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty. Cryosphere 17, 5197–5217 (2023).
Ehrenfeucht, S., Dow, C., McArthur, K., Morlighem, M. & McCormack, F. S. Antarctic wide subglacial hydrology modeling. Geophys. Res. Lett. 52, e2024GL111386 (2025).
Graham, F. S. et al. A high-resolution synthetic bed elevation grid of the Antarctic continent. Earth Syst. Sci. Data 9, 267–279 (2017).
Paxman, G. J. G., Gasson, E. G. W., Jamieson, S. S. R., Bentley, M. J. & Ferraccioli, F. Long-term increase in Antarctic Ice Sheet vulnerability driven by bed topography evolution. Geophys. Res. Lett. 47, e2020GL090003 (2020).
Castleman, B. A., Schlegel, N.-J., Caron, L., Larour, E. & Khazendar, A. Derivation of bedrock topography measurement requirements for the reduction of uncertainty in ice-sheet model projections of Thwaites Glacier. Cryosphere 16, 761–778 (2022).
Reading, A. M. et al. Antarctic geothermal heat flow and its implications for tectonics and ice sheets. Nat. Rev. Earth. Environ. 3, 814–831 (2022).
Stål, T., Reading, A. M., Halpin, J. A. & Whittaker, J. M. Antarctic geothermal heat flow model: Aq1. Geochem. Geophys. Geosyst. 22, e2020GC009428 (2021).
Ivins, E. R., van der Wal, W., Wiens, D. A., Lloyd, A. J. & Caron, L. in The Geochemistry and Geophysics of the Antarctic Mantle (eds A. P. Martin & W. van der Wal) (Geological Society of London, 2023).
Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic Ice Sheet. Nat. Commun. 10, 503 (2019).
Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).
Griffiths, H. J., Cummings, V. J., Van de Putte, A., Whittle, R. J. & Waller, C. L. Antarctic benthic ecological change. Nat. Rev. Earth Environ. 5, 645–664 (2024). A comprehensive summary of abrupt changes that are threatening cold-adapted species in the benthic communities around Antarctica due to warming, ocean acidification and cryospheric changes.
Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic region. Nat. Commun. 15, 7433 (2024).
Wienecke, B., Lieser, J. L., McInnes, J. C. & Barrington, J. H. S. Fast ice variability in East Antarctica: observed repercussions for emperor penguins. Endang. Species Res. 55, 1–19 (2024).
Ingels, J. et al. Antarctic ecosystem responses following ice-shelf collapse and iceberg calving: science review and future research. WIREs Clim. Change 12, e682 (2021).
Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Global Change Biol. 19, 3749–3761 (2013).
Sahade, R. et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci. Adv. 1, e1500050 (2015).
Clark, G. F., Stark, J. S., Palmer, A. S., Riddle, M. J. & Johnston, E. L. The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities. PLoS ONE 12, e0168391 (2017).
Dayton, P. K. et al. Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecol. Appl. 29, e01823 (2019).
Prather, H. M. et al. Species-specific effects of passive warming in an Antarctic moss system. R. Soc. Open Sci. 6, 190744 (2019).
Roland, T. P. et al. Sustained greening of the Antarctic Peninsula observed from satellites. Nat. Geosci. 17, 1121–1126 (2024).
Bokhorst, S. et al. Greening rates are sensitive to methodology and biology; comment to sustained greening of the Antarctic Peninsula observed from satellites. Preprint at bioRxiv https://doi.org/10.1101/2024.11.07.622227 (2024).
Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e1592 (2022).
Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).
Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Global Change Biol. 28, 5865–5880 (2022).
Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biol. 27, 1692–1703 (2021). This perspective underscores the interconnectedness of global ecosystems by demonstrating that ecosystem collapse, from the tropics to the Antarctic, necessitates urgent and comprehensive strategies to mitigate cascading abrupt changes.
Fraser, A. D. et al. Antarctic Landfast Sea Ice: a review of its physics, biogeochemistry and ecology. Rev. Geophys. 61, e2022RG000770 (2023). This review addresses Antarctic land-fast sea ice, highlighting its critical role in regional physics, biogeochemistry and ecology, and emphasizing the potential consequences of its rapid decline.
Jenouvrier, S. et al. The call of the emperor penguin: legal responses to species threatened by climate change. Global Change Biol. 27, 5008–5029 (2021).
Fretwell, P. T. A 6 year assessment of low sea-ice impacts on emperor penguins. Antarct. Sci. 36, 3–5 (2024).
Fretwell, P. T. & Trathan, P. N. Emperors on thin ice: three years of breeding failure at Halley Bay. Antarct. Sci. 31, 133–138 (2019).
Corso, A. D., Steinberg, D. K., Stammerjohn, S. E. & Hilton, E. J. Climate drives long-term change in Antarctic silverfish along the western Antarctic Peninsula. Commun. Biol. 5, 104 (2022).
Schmidt, A. E. et al. Sea ice concentration decline in an important Adélie penguin molt area. Proc. Natl Acad. Sci. USA 120, e2306840120 (2023).
Fernández-Barba, M., Belyaev, O., Huertas, I. E. & Navarro, G. Marine heatwaves in a shifting Southern Ocean induce dynamical changes in primary production. Commun. Earth Environ. 5, 404 (2024).
Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Change 9, 148–152 (2019).
Boyd, P. W. et al. The role of biota in the Southern Ocean carbon cycle. Nat. Rev. Earth Environ. 5, 390–408 (2024).
Hancock, A. M., King, C. K., Stark, J. S., McMinn, A. & Davidson, A. T. Effects of ocean acidification on Antarctic marine organisms: a meta-analysis. Ecol. Evol. 10, 4495–4514 (2020).
Nissen, C. et al. Severe 21st-century ocean acidification in Antarctic Marine Protected Areas. Nat. Commun. 15, 259 (2024).
Hayward, A. et al. Antarctic phytoplankton communities restructure under shifting sea-ice regimes. Nat. Clim. Change, https://doi.org/10.1038/s41558-025-02379-x (2025).
Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).
Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411–418 (2016).
Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).
Naughten, K. A. et al. Two-timescale response of a large Antarctic ice shelf to climate change. Nat. Commun. 12, 1991 (2021).
Rackow, T. et al. Delayed Antarctic sea-ice decline in high-resolution climate change simulations. Nat. Commun. 13, 637 (2022).
Beckmann, J. & Winkelmann, R. Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet. Cryosphere 17, 3083–3099 (2023).
Kubiszewski, I. et al. Cascading tipping points of Antarctica and the Southern Ocean. Ambio 54, 642–659 (2025).
Hughes, K. A., Convey, P. & Turner, J. Developing resilience to climate change impacts in Antarctica: an evaluation of Antarctic Treaty System protected area policy. Environ. Sci. Policy 124, 12–22 (2021).
Brooks, C. M. et al. Protect global values of the Southern Ocean ecosystem. Science 378, 477–479 (2022).
Siegert, M. et al. Safeguarding the polar regions from dangerous geoengineering: a crticial assessment of current projects and future prospects. Front. Sci. Preprint at https://doi.org/10.13140/RG.2.2.13179.94246 (in the press). The urgency of human-caused climate change and the potential abrupt and irreversibile global impacts of polar changes is sparking pressures for polar geoengineering solutions, but this paper assesses that these are not feasible and may instead be environmentally dangerous.
Fankhauser, S. et al. The meaning of net zero and how to get it right. Nat. Clim. Change 12, 15–21 (2022).
Forster, P. M. et al. Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 16, 2625–2658 (2024).
Matthews, H. D. et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat. Geosci. 13, 769–779 (2020).
Moorman, R., Morrison, A. K. & McC. Hogg, A. Thermal responses to Antarctic Ice Shelf melt in an eddy-rich global ocean–sea ice model. J. Clim. 33, 6599–6620 (2020).
Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea ice index, version 3 [Data Set]. National Snow and Ice Data Center https://doi.org/10.7265/N5K072F8 (2017).
Meier, W. N., Fetterer, F., Windnagel, A. K. & Stewart, J. S. NOAA/NSIDC climate data record of passive microwave sea ice concentration. (G02202, version 4). [Data Set]. National Snow and Ice Data Center https://doi.org/10.7265/efmz-2t65 (2021).
Fogt, R. Antarctic sea ice reconstructions, version 2. Figshare https://doi.org/10.6084/m9.figshare.c.5709767 (2021).
Dalaiden, Q. An unprecedented sea ice retreat in the Weddell Sea driving an overall decrease of the Antarctic sea-ice extent over the 20th century [Data set]. Zenodo https://doi.org/10.5281/zenodo.7966209 (2023).
Maierhofer, T. J., Raphael, M. N. & Handcock, M. 20th Century Antarctic sea ice extent anomaly reconstruction by sector. Zenodo https://doi.org/10.5281/zenodo.7971734 (2023).
Murphy, E. J., Clarke, A., Abram, N. J. & Turner, J. Variability of sea-ice in the northern Weddell Sea during the 20th century. J. Geophys. Res. Oceans 119, 4549–4572 (2014).
Murphy, E., Dunn, M., Turner, J., Clarke, A. & Abram, N. South Orkney Fast-Ice Series (SOFI) (version 2.0) [Data set]. NERC EDS UK Polar Data Centre https://doi.org/10.5285/0313090c-373e-4e2e-97f2-6cd0d4138e75 (2022).
Thomas, E. R. & Abram, N. J. Ice core reconstruction of sea ice change in the Amundsen-Ross Seas since 1702 A.D. Geophys. Res. Lett. 43, 5309–5317 (2016).
Thomas, E. R. Amundsen-Ross sea ice reconstruction based on data from the Ferrigno ice core (F10), Bryan Coast, West Antarctica (version none) [Data set]. Natural Environment Research Council https://doi.org/10.5285/1f44795b-e596-433c-b69f-caf674880daa (2017).
Abram, N. J. et al. Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. J. Geophys. Res. Atmos. https://doi.org/10.1029/2010JD014644 (2010).
Curran, M. A. J., van Ommen, T. D., Morgan, V. I., Phillips, K. L. & Palmer, A. S. Ice core evidence for Antarctic Sea Ice decline since the 1950s. Science 302, 1203–1206 (2003).
Curran, M. & van Ommen, T. 150 year MSA sea ice proxy record from Law Dome, Antarctica, (version 1) [Data Set]. Australian Antarctic Data Centre https://doi.org/10.26179/5bf4b43fd4f45 (2011).
Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).
DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).
Li, L., Aitken, A. R. A., Lindsay, M. D. & Kulessa, B. Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks. Nat. Geosci. 15, 645–650 (2022).
Sun, Y., Wang, Y., Zhai, Z. & Zhou, M. Changes in the Antarctic’s summer surface albedo, observed by satellite since 1982 and associated with sea ice anomalies. Remote Sens. 15, 4940 (2023).
van Wessem, J. M., van den Broeke, M. R., Wouters, B. & Lhermitte, S. Variable temperature thresholds of melt pond formation on Antarctic ice shelves. Nat. Clim. Change 13, 161–166 (2023).
Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).
Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic Ice Sheet. Science 333, 1427–1430 (2011).
Ivins, E. R. et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth 118, 3126–3141 (2013).
Schmidt, A. E. & Ballard, G. Significant chick loss after early fast ice breakup at a high-latitude emperor penguin colony. Antarct. Sci. 32, 180–185 (2020).
Fretwell, P. Four unreported emperor penguin colonies discovered by satellite. Antarct. Sci. 36, 277–279 (2024).
Pawlowicz, R. M_Map: a mapping package for MATLAB version 1.4 m (Computer Software), https://github.com/g2e/m_map (2020).
Greene, C. A. et al. The climate data toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).
Stål, T. & Reading, A. M. A grid for multidimensional and multivariate spatial representation and data processing. J. Open Res. Softw. 8, 2 (2020).
Abram, N. J., Wolff, E. W. & Curran, M. A. J. A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev. 79, 168–183 (2013).
Cotté, C. & Guinet, C. Historical whaling records reveal major regional retreat of Antarctic sea ice. Deep Sea Res. 54, 243–252 (2007).
de la Mare, W. K. Changes in Antarctic sea-ice extent from direct historical observations and whaling records. Clim. Change 92, 461–493 (2009).