Friday, August 22, 2025
No menu items!
HomeNatureDiscovery of a widespread chemical signalling pathway in the Bacteroidota

Discovery of a widespread chemical signalling pathway in the Bacteroidota

  • Buchan, A., LeCleir, G. R., Gulvik, C. A. & Gonzalez, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).

    PubMed 

    Google Scholar
     

  • Brinkmann, S., Spohn, M. S. & Schaberle, T. F. Bioactive natural products from Bacteroidetes. Nat. Prod. Rep. 39, 1045–1065 (2022).

    PubMed 

    Google Scholar
     

  • Desai, M. S. & Brune, A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012).

    PubMed 

    Google Scholar
     

  • Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl Acad. Sci. USA 106, 19521–19526 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrahamsen, H. L. et al. Distant relatives of a eukaryotic cell-specific toxin family evolved a complement-like mechanism to kill bacteria. Nat. Commun. 15, 5028 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coyne, M. J. et al. A family of anti-Bacteroidales peptide toxins wide-spread in the human gut microbiota. Nat. Commun. 10, 3460 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, K. et al. Bacteroides fragilis ubiquitin homologue drives intraspecies bacterial competition in the gut microbiome. Nat. Microbiol. 9, 70–84 (2024).

    PubMed 

    Google Scholar
     

  • Hecht, A. L., Casterline, B. W., Choi, V. M. & Bubeck Wardenburg, J. A two-component system regulates Bacteroides fragilis toxin to maintain intestinal homeostasis and prevent lethal disease. Cell Host Microbe 22, 443–448 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Identification of trypsin-degrading commensals in the large intestine. Nature 609, 582–589 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y., Forstner, K. U., Vogel, J. & Smith, C. J. cis-encoded small RNAs, a conserved mechanism for repression of polysaccharide utilization in Bacteroides. J. Bacteriol. 198, 2410–2418 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, A. N. D. et al. A novel family of RNA-binding proteins regulate polysaccharide metabolism in Bacteroides thetaiotaomicron. J. Bacteriol. 203, e0021721 (2021).

    PubMed 

    Google Scholar
     

  • Davidson, B. S. & Schumacher, R. W. Isolation and synthesis of caprolactins A and B, new caprolactams from a marine bacterium. Tetrahedron 49, 6569–6574 (1993).


    Google Scholar
     

  • Bayley, D. P., Rocha, E. R. & Smith, C. J. Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol. Lett. 193, 149–154 (2000).

    PubMed 

    Google Scholar
     

  • Elmassry, M. M. et al. A meta-analysis of the gut microbiome in inflammatory bowel disease patients identifies disease-associated small molecules. Cell Host Microbe 33, 218–234.e12 (2025).

  • Ma, X., Jiang, K., Zhou, C., Xue, Y. & Ma, Y. Identification and characterization of a novel GNAT superfamily Nα-acetyltransferase from Salinicoccus halodurans H3B36. Microb. Biotechnol. 15, 1652–1665 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duda, D. M., Walden, H., Sfondouris, J. & Schulman, B. A. Structural analysis of Escherichia coli ThiF. J. Mol. Biol. 349, 774–786 (2005).

    PubMed 

    Google Scholar
     

  • Lake, M. W., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414, 325–329 (2001).

    ADS 
    PubMed 

    Google Scholar
     

  • Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walden, H. et al. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 12, 1427–1437 (2003).

    PubMed 

    Google Scholar
     

  • Lois, L. M. & Lima, C. D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sugimoto, Y. et al. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science https://doi.org/10.1126/science.aax9176 (2019).

  • Balaich, J. et al. The human microbiome encodes resistance to the antidiabetic drug acarbose. Nature 600, 110–115 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsek, M. R. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl Acad. Sci. USA 97, 8789–8793 (2000).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brameyer, S., Kresovic, D., Bode, H. B. & Heermann, R. Dialkylresorcinols as bacterial signaling molecules. Proc. Natl Acad. Sci. USA 112, 572–577 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Kelly, R. C. et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat. Chem. Biol. 5, 891–895 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. H. et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol. Microbiol. 51, 903–912 (2004).

    PubMed 

    Google Scholar
     

  • Zhou, S. et al. Molecular basis for control of antibiotic production by a bacterial hormone. Nature 590, 463–467 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Wellington, S. & Greenberg, E. P. Quorum sensing signal selectivity and the potential for interspecies cross talk. mBio https://doi.org/10.1128/mBio.00146-19 (2019).

  • Wilbanks, L. E. et al. Synthesis of gamma-butyrolactone hormones enables understanding of natural product induction. ACS Chem. Biol. 18, 1624–1631 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robes, J. M. D. et al. A conserved biosynthetic gene cluster is regulated by quorum sensing in a shipworm symbiont. Appl. Environ. Microbiol. 88, e0027022 (2022).

    PubMed 

    Google Scholar
     

  • Li, X. H. & Lee, J. H. Quorum sensing-dependent post-secretional activation of extracellular proteases in Pseudomonas aeruginosa. J. Biol. Chem. 294, 19635–19644 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, S. C. & Lee, C. Y. Quorum-sensing regulator OpaR directly represses seven protease genes in Vibrio parahaemolyticus. Front. Microbiol. 11, 534692 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinmoen, H., Knutsen, E. & Havarstein, L. S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl Acad. Sci. USA 99, 7681–7686 (2002).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rued, B. E. et al. Quorum sensing in Streptococcus mutans regulates production of tryglysin, a novel RaS-RiPP antimicrobial compound. mBio https://doi.org/10.1128/mBio.02688-20 (2021).

  • Alves, J. A., Leal, F. C., Previato-Mello, M. & da Silva Neto, J. F. A quorum sensing-regulated type VI secretion system containing multiple nonredundant VgrG proteins is required for interbacterial competition in Chromobacterium violaceum. Microbiol. Spectr. 10, e0157622 (2022).

    PubMed 

    Google Scholar
     

  • Majerczyk, C., Schneider, E. & Greenberg, E. P. Quorum sensing control of type VI secretion factors restricts the proliferation of quorum-sensing mutants. eLife 5, e14712 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, G. et al. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J. Proteome Res. 12, 3327–3341 (2013).

    PubMed 

    Google Scholar
     

  • Riedel, K. et al. N-acyl-l-homoserine lactone-mediated regulation of the lip secretion system in Serratia liquefaciens MG1. J. Bacteriol. 183, 1805–1809 (2001).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066–2079 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patzelt, D. et al. You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J. 7, 2274–2286 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber, M. et al. An RNA sponge controls quorum sensing dynamics and biofilm formation in Vibrio cholerae. Nat. Commun. 13, 7585 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waters, C. M., Lu, W., Rabinowitz, J. D. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J. Bacteriol. 190, 2527–2536 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber, B. et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147, 2517–2528 (2001).

    PubMed 

    Google Scholar
     

  • Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–104 (2003).

    PubMed 

    Google Scholar
     

  • Patzelt, D. et al. Gene flow across genus barriers—conjugation of Dinoroseobacter shibae’s 191-kb killer plasmid into Phaeobacter inhibens and AHL-mediated expression of type IV secretion systems. Front. Microbiol. 7, 742 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eberhard, A. et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449 (1981).

    PubMed 

    Google Scholar
     

  • Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

    PubMed 

    Google Scholar
     

  • Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    PubMed 

    Google Scholar
     

  • Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70 (2017).

    PubMed 

    Google Scholar
     

  • Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng, Y. J. et al. Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease. J. Dig. Dis. 20, 447–459 (2019).

    PubMed 

    Google Scholar
     

  • Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    PubMed 

    Google Scholar
     

  • Abu-Ali, G. S. et al. Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat. Microbiol. 3, 356–366 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3, 337–346 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson, S. N. et al. Functional expression of dental plaque microbiota. Front. Cell Infect. Microbiol. 4, 108 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benitez-Paez, A., Belda-Ferre, P., Simon-Soro, A. & Mira, A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genom. 15, 311 (2014).


    Google Scholar
     

  • Jorth, P. et al. Metatranscriptomics of the human oral microbiome during health and disease. mBio 5, e01012-14 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szafranski, S. P. et al. Functional biomarkers for chronic periodontitis and insights into the roles of Prevotella nigrescens and Fusobacterium nucleatum; a metatranscriptome analysis. npj Biofilms Microbiomes 1, 15017 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shkoporov, A. N. et al. Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol. 19, 163 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Procter, J. B. et al. Alignment of biological sequences with Jalview. Methods Mol. Biol. 2231, 203–224 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez, B., Secades, P., McBride, M. J. & Guijarro, J. A. Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 70, 581–587 (2004).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z., Ioca, L. P., He, R. & Donia, M. S. Natural diversifying evolution of nonribosomal peptide synthetases in a defensive symbiont reveals nonmodular functional constraints. PNAS Nexus 3, pgae384 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marfey, P. Determination of d-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 49, 591–596 (1984).

    ADS 

    Google Scholar
     

  • Shi, T. T. et al. Design, synthesis and properties investigation of Nα-acylation lysine based derivatives. RSC Adv. 9, 7587–7593 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D 63, 32–41 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

    PubMed 

    Google Scholar
     

  • Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. https://doi.org/10.1002/0471250953.bi0203s00 (2002).

  • Churchill, M. E. & Chen, L. Structural basis of acyl-homoserine lactone-dependent signaling. Chem. Rev. 111, 68–85 (2011).

    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments