Friday, August 22, 2025
No menu items!
HomeNatureElectron flow matching for generative reaction mechanism prediction

Electron flow matching for generative reaction mechanism prediction

  • Lavoisier, A. Traité Élémentaire de Chimie (Elementary Treatise on Chemistry) (Cuchet, 1789).

  • Do, K., Tran, T. & Venkatesh, S. Graph transformation policy network for chemical reaction prediction. In Proc. 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’19) 750–760 (ACM, 2019).

  • Jin, W., Coley, C., Barzilay, R. & Jaakkola, T. Predicting organic reaction outcomes with Weisfeiler-Lehman network. In Proc. 31st International Conference on Neural Information Processing Systems (NIPS’17) 2604–2613 (ACM, 2017).

  • Bradshaw, J., Kusner, M. J., Paige, B., Segler, M. H. & Hernández-Lobato, J. M. A generative model for electron paths. In International Conference on Learning Representations (2019).

  • Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10, 370–377 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwaller, P. et al. Molecular Transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 5, 1572–1583 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tetko, I. V., Karpov, P., Van Deursen, R. & Godin, G. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. Nat. Commun. 11, 5575 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, H. et al. Non-autoregressive electron redistribution modeling for reaction prediction. In Proc. 38th International Conference on Machine Learning 904–913 (PMLR, 2021).

  • Tu, Z. & Coley, C. W. Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. J. Chem. Inf. Model. 62, 3503–3513 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. From theory to experiment: transformer-based generation enables rapid discovery of novel reactions. J. Cheminform. 14, 60 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwaller, P. et al. Machine intelligence for chemical reaction space. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1604 (2022).

    MathSciNet 

    Google Scholar
     

  • Joung, J. F. et al. Reproducing reaction mechanisms with machine-learning models trained on a large-scale mechanistic dataset. Angew. Chem. Int. Ed. 63, e202411296 (2024).

    CAS 

    Google Scholar
     

  • Bradshaw, J. et al. Challenging reaction prediction models to generalize to novel chemistry. ACS Cent. Sci. 11, 539–549 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, A. et al. Conditional flow matching: simulation-free dynamic optimal transport. Preprint at https://arxiv.org/abs/2302.00482v1 (2023).

  • Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M. & Le, M. Flow matching for generative modeling. In International Conference on Learning Representations (2023).

  • Liu, X., Gong, C. & Liu, Q. Flow straight and fast: learning to generate and transfer data with rectified flow. In International Conference on Learning Representations (2023).

  • Dugundji, J. & Ugi, I. in Computers in Chemistry, 19–64 (Springer, 1973).

  • Ugi, I. et al. Computer-assisted solution of chemical problems-the historical development and the present state of the art of a new discipline of chemistry. Angew. Chem. Int. Ed. Engl. 32, 201–227 (1993).


    Google Scholar
     

  • Tu, Z., Stuyver, T. & Coley, C. W. Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery. Chem. Sci. 14, 226–244 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. H. & Baldi, P. No electron left behind: a rule-based expert system to predict chemical reactions and reaction mechanisms. J. Chem. Inf. Model. 49, 2034–2043 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kayala, M. A., Azencott, C.-A., Chen, J. H. & Baldi, P. Learning to predict chemical reactions. J. Chem. Inf. Model. 51, 2209–2222 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kayala, M. A. & Baldi, P. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning. J. Chem. Inf. Model. 52, 2526–2540 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Fooshee, D. et al. Deep learning for chemical reaction prediction. Mol. Syst. Des. Eng. 3, 442–452 (2018).

    CAS 

    Google Scholar
     

  • Tavakoli, M. et al. AI for interpretable chemistry: predicting radical mechanistic pathways via contrastive learning. In Proc. 37th International Conference on Neural Information Processing Systems (NIPS’23) (ACM, 2024).

  • Song, Y. et al. Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations (2021).

  • Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In Proc. 34th International Conference on Neural Information Processing Systems (NIPS’20) 6840–6851 (ACM, 2020).

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingraham, J. B. et al. Illuminating protein space with a programmable generative model. Nature 623, 1070–1078 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold all-atom. Science 384, eadl2528 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoogeboom, E., Satorras, V. G., Vignac, C. & Welling, M. Equivariant diffusion for molecule generation in 3D. In Proc. 39th International Conference on Machine Learning 8867–8887 (PMLR, 2022).

  • Xu, M., Powers, A. S., Dror, R. O., Ermon, S. & Leskovec, J. Geometric latent diffusion models for 3D molecule generation. In Proc. 40th International Conference on Machine Learning 38592–38610 (PMLR, 2023).

  • Igashov, I., Schneuing, A., Segler, M., Bronstein, M. & Correia, B. RetroBridge: modeling retrosynthesis with Markov bridges. In International Conference on Learning Representations (2024).

  • Wang, Y. et al. RetroDiff: retrosynthesis as multi-stage distribution interpolation. Preprint at https://arxiv.org/html/2311.14077v1 (2023).

  • Kim, S., Woo, J. & Kim, W. Y. Diffusion-based generative AI for exploring transition states from 2D molecular graphs. Nat. Commun. 15, 341 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan, C., Du, Y., Jia, H. & Kulik, H. J. Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model. Nat. Comput. Sci. 3, 1045–1055 (2023).

    PubMed 

    Google Scholar
     

  • Dai, H., Li, C., Coley, C., Dai, B. & Song, L. Retrosynthesis prediction with conditional graph logic network. In Proc. 33rd International Conference on Neural Information Processing Systems 8872–8882 (ACM, 2019).

  • O’Boyle, N. & Dalke, A. DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d (2018).

  • Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn. Sci. Technol. 1, 045024 (2020).


    Google Scholar
     

  • NextMove Software. Pistachio. https://www.nextmovesoftware.com/pistachio.html.

  • Kotian, P. L. et al. Human plasma kallikrein inhibitors https://patents.google.com/patent/US20240150295A1/en (2024).

  • Kotian, P. L. et al. Human plasma kallikrein inhibitors https://patents.google.com/patent/US20240150296A1/en (2024).

  • Zhao, Q. & Savoie, B. M. Simultaneously improving reaction coverage and computational cost in automated reaction prediction tasks. Nat. Comput. Sci. 1, 479–490 (2021).

    PubMed 

    Google Scholar
     

  • Suleimanov, Y. V. & Green, W. H. Automated discovery of elementary chemical reaction steps using freezing string and Berny optimization methods. J. Chem. Theory Comput. 11, 4248–4259 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Zimmerman, P. M. Automated discovery of chemically reasonable elementary reaction steps. J. Comput. Chem. 34, 1385–1392 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Ismail, I., Stuttaford-Fowler, H. B. V. A., Ochan Ashok, C., Robertson, C. & Habershon, S. Automatic proposal of multistep reaction mechanisms using a graph-driven search. J. Phys. Chem. A 123, 3407–3417 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pesciullesi, G., Schwaller, P., Laino, T. & Reymond, J.-L. Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates. Nat. Commun. 11, 4874 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Zhang, C., Bai, R., Li, J. & Duan, H. Heck reaction prediction using a transformer model based on a transfer learning strategy. Chem. Commun. 56, 9368–9371 (2020).

    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Data augmentation and transfer learning strategies for reaction prediction in low chemical data regimes. Org. Chem. Front. 8, 1415–1423 (2021).

    CAS 

    Google Scholar
     

  • Luo, Y. et al. An empirical study of catastrophic forgetting in large language models during continual fine-tuning. Preprint at https://arxiv.org/abs/2308.08747 (2025).

  • Tavakoli, M., Chiu, Y. T. T., Baldi, P., Carlton, A. M. & Van Vranken, D. RMechDB: a public database of elementary radical reaction steps. J. Chem. Inf. Model. 63, 1114–1123 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavakoli, M. et al. PMechDB: a public database of elementary polar reaction steps. J. Chem. Inf. Model. 64, 1975–1983 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS 

    Google Scholar
     

  • Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    CAS 

    Google Scholar
     

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schütt, K. et al. SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. In Proc. 31st International Conference on Neural Information Processing Systems (NIPS’17) 992–1002 (ACM, 2017).

  • DeBoer, C. Iteround. GitHub https://github.com/cgdeboer/iteround/ (2018).

  • NextMove Software. NameRxn. https://www.nextmovesoftware.com/namerxn.html.

  • Schwaller, P., Hoover, B., Reymond, J.-L., Strobelt, H. & Laino, T. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions. Sci. Adv. 7, eabe4166 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaswani, A. Attention is all you need. In Proc. 31st International Conference on Neural Information Processing Systems (NIPS’17) 6000–6010 (ACM, 2017).

  • Ying, C. et al. Do transformers really perform bad for graph representation? In Proc. 35th International Conference on Neural Information Processing Systems (NIPS’21) 28877–28888 (2021).

  • Joung, J. F. et al. FlowER – mechanistic datasets and model checkpoint. Figshare https://figshare.com/articles/dataset/FlowER_-_Mechanistic_datasets_and_model_checkpoint/28359407 (2025).

  • FongMunHong. FongMunHong/FlowER: release v1.0.0. Zenodo https://zenodo.org/records/15776086 (2025).

  • FongMunHong. FongMunHong/FlowER: release v2.0.0. Zenodo https://zenodo.org/records/15786107 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments