Thursday, August 21, 2025
No menu items!
HomeNaturemAChR4 suppresses liver disease via GAP-induced antimicrobial immunity

mAChR4 suppresses liver disease via GAP-induced antimicrobial immunity

  • Lee, B. P., Vittinghoff, E., Dodge, J. L., Cullaro, G. & Terrault, N. A. National trends and long-term outcomes of liver transplant for alcohol-associated liver disease in the United States. JAMA Intern. Med. 179, 340–348 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llorente, C. et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat. Commun. 8, 837 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan, Y. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575, 505–511 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruellman, R. & Llorente, C. A perspective of intestinal immune-microbiome interactions in alcohol-associated liver disease. Int. J. Biol. Sci. 17, 307–327 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raya Tonetti, F. et al. Gut–liver axis: recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology https://doi.org/10.1097/HEP.0000000000000924 (2024).

  • Knoop, K. A., McDonald, K. G., McCrate, S., McDole, J. R. & Newberry, R. D. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8, 198–210 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni, D. H. et al. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol. 13, 271–282 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Gustafsson, J. K. et al. Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. eLife 10, e67292 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cario, E. et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164, 966–972 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Koff, J. L., Shao, M. X., Ueki, I. F. & Nadel, J. A. Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L1068–L1075 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Kulkarni, D. H. et al. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol. 11, 1103–1113 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartmann, P. et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology 58, 108–119 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuhn, K. A. et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 11, 357–368 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Llorente, C. Isolation of myenteric and submucosal plexus from mouse gastrointestinal tract and subsequent co-culture with small intestinal organoids. Cells 13, 815 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llorente, C. The imperative for innovative enteric nervous system-intestinal organoid co-culture models: transforming GI disease modeling and treatment. Cells 13, 820 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Findeisen, M. et al. Treatment of type 2 diabetes with the designer cytokine IC7Fc. Nature 574, 63–68 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonald, K. G., Schill, E. M., Joyce, E., Floyd, A. N. & Newberry, R. D. Maternal antibiotic treatment dysregulates goblet cell-associated antigen passages in neonatal mice. J. Immunol. 210, 72.41 (2023).


    Google Scholar
     

  • Taniguchi, K. et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todoric, J. et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab. 2, 1034–1045 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denning, T. L. et al. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 187, 733–747 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 19, 227–239 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. USA 99, 12651–12656 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X. Z. & Sarna, S. K. Inflammatory modulation of muscarinic receptor activation in canine ileal circular muscle cells. Gastroenterology 112, 864–874 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Bertola, A., Mathews, S., Ki, S. H., Wang, H. & Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 8, 627–637 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bubser, M. et al. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem. Neurosci. 5, 920–942 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Pancani, T. et al. Allosteric activation of M4 muscarinic receptors improve behavioral and physiological alterations in early symptomatic YAC128 mice. Proc. Natl Acad. Sci. USA 112, 14078–14083 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould, R. W. et al. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154. Neuropharmacology 128, 492–502 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Knoop, K. A., McDonald, K. G., Kulkarni, D. H. & Newberry, R. D. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 65, 1100–1109 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Knoop, K. A. et al. Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages. Gut Microbes 8, 400–411 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, S. et al. Paneth cell multipotency induced by Notch activation following injury. Cell Stem Cell 23, 46–59 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romera-Hernandez, M. et al. Yap1-driven intestinal repair is controlled by group 3 innate lymphoid cells. Cell Rep. 30, 37–45 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715–723 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Talbot, J. et al. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 579, 575–580 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nystrom, E. E. L. et al. An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Science 372, eabb1590 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, L. C. et al. Acetylcholine muscarinic M4 receptors as a therapeutic target for alcohol use disorder: converging evidence from humans and rodents. Biol. Psychiatry 88, 898–909 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoll, K., Hart, R., Lindsley, C. W. & Thomsen, M. Effects of muscarinic M1 and M4 acetylcholine receptor stimulation on extinction and reinstatement of cocaine seeking in male mice, independent of extinction learning. Psychopharmacology 235, 815–827 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, L. S. et al. Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology 216, 367–378 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Cour, C. et al. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice. Eur. J. Pharmacol. 746, 1–5 (2015).

    PubMed 

    Google Scholar
     

  • Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294, 2155–2158 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingwell, K. Muscarinic drugs breathe new life into schizophrenia pipeline. Nat. Rev. Drug Discov. 23, 647–649 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen-Khac, E. et al. Assessment of asymptomatic liver fibrosis in alcoholic patients using fibroscan: prospective comparison with seven non-invasive laboratory tests. Aliment. Pharmacol. Ther. 28, 1188–1198 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, J. et al. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J. Neurosci. 30, 2396–2405 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871–10876 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, C. L. et al. Differences in bacterial translocation and liver injury in ethanol versus diet-induced liver disease. Dig. Dis. Sci. 68, 3059–3069 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, R. et al. Intestinal α1-2-fucosylation contributes to obesity and steatohepatitis in mice. Cell. Mol. Gastroenterol. Hepatol. 12, 293–320 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton, A. M. et al. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc. Natl Acad. Sci. USA 111, 6696–6701 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maccioni, L. et al. Duodenal CD8+ T resident memory cell apoptosis contributes to gut barrier dysfunction and microbial translocation in early alcohol-associated liver disease in humans. Aliment. Pharmacol. Ther. 56, 1055–1070 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, A. W. et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53, 96–105 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Fouts, D. E., Torralba, M., Nelson, K. E., Brenner, D. A. & Schnabl, B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J. Hepatol. 56, 1283–1292 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148, 203–214 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aymanns, S., Mauerer, S., van Zandbergen, G., Wolz, C. & Spellerberg, B. High-level fluorescence labeling of Gram-positive pathogens. PLoS ONE 6, e19822 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda, H. et al. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol. Med. Microbiol. 39, 81–86 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Knoop, K. A. et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaao1314 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments