Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).
van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).
Kim, Y. & Burd, C. G. Lipid Sorting and organelle identity. Cold Spring Harb. Perspect. Biol. 15, a041397 (2023).
Moon, H., Iglesias-Artola, J. M., Hersemann, L. & Nadler, A. Lipid imaging: quantitative imaging of species-specific lipid transport in mammalian cells. https://doi.org/21.11101/0000-0007-FCE5-B (Max Planck Institute of Molecular Cell Biology and Genetics, 2025).
Klose, C., Surma, M. A. & Simons, K. Organellar lipidomics—background and perspectives. Curr. Opin. Cell Biol. 25, 406–413 (2013).
Sampaio, J. L. et al. Membrane lipidome of an epithelial cell line. Proc. Natl Acad. Sci. USA 108, 1903–1907 (2011).
Holthuis, J. C. M. & Menon, A. K. Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 48–57 (2014).
Reinisch, K. M. & Prinz, W. A. Mechanisms of nonvesicular lipid transport. J. Cell Biol. 220, e202012058 (2021).
Koivusalo, M., Jansen, M., Somerharju, P. & Ikonen, E. Endocytic trafficking of sphingomyelin depends on its acyl chain length. MBoC 18, 5113–5123 (2007).
Haberkant, P. & Holthuis, J. C. M. Fat & fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta 1841, 1022–1030 (2014).
Höglinger, D. et al. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc. Natl Acad. Sci. USA 114, 1566–1571 (2017).
Haberkant, P. et al. In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. Angew. Chem. Int. Ed. 52, 4033–4038 (2013).
Höglinger, D. in Intracellular Lipid Transport. Methods in Molecular Biology Vol. 1949 (ed. Drin, G.) 95–103 (Humana Press, 2019); https://doi.org/10.1007/978-1-4939-9136-5_8.
Altuzar, J. et al. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Proc. Natl Acad. Sci. USA 120, e2213886120 (2023).
Farley, S., Stein, F., Haberkant, P., Tafesse, F. G. & Schultz, C. Trifunctional sphinganine: a new tool to dissect sphingolipid function. ACS Chem. Biol. 19, 336–347 (2024).
Schuhmacher, M. et al. Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities. Proc. Natl Acad. Sci. USA 117, 7729–7738 (2020).
Höglinger, D., Nadler, A. & Schultz, C. Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta 1841, 1085–1096 (2014).
Jiménez-López, C. & Nadler, A. Caged lipid probes for controlling lipid levels on subcellular scales. Curr. Opin. Chem. Biol. 72, 102234 (2023).
Frank, J. A. et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat. Chem. Biol. 12, 755 (2016).
Morstein, J., Impastato, A. C. & Trauner, D. Photoswitchable lipids. ChemBioChem 22, 73–83 (2021).
Haldar, S. & Chattopadhyay, A. in Fluorescent Methods to Study Biological Membranes (eds Mély, Y. & Duportail, G.) 37–50 (Springer, 2013); https://doi.org/10.1007/4243_2012_43.
Klymchenko, A. S. & Kreder, R. Fluorescent probes for lipid rafts: from model membranes to living cells. Chem. Biol. 21, 97–113 (2014).
Triebl, A. & Wenk, M. R. Analytical considerations of stable isotope labelling in lipidomics. Biomolecules 8, 151 (2018).
Postle, A. D. & Hunt, A. N. Dynamic lipidomics with stable isotope labelling. J. Chromatogr. B 877, 2716–2721 (2009).
Thiele, C. et al. Tracing fatty acid metabolism by click chemistry. ACS Chem. Biol. 7, 2004–2011 (2012).
Thiele, C., Wunderling, K. & Leyendecker, P. Multiplexed and single cell tracing of lipid metabolism. Nat. Methods 16, 1123–1130 (2019).
Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. & Thiele, C. Triglyceride cycling enables modification of stored fatty acids. Nat. Metab. 5, 699–709 (2023).
Koukalová, A. et al. Lipid driven nanodomains in giant lipid vesicles are fluid and disordered. Sci. Rep. 7, 5460 (2017).
Sarmento, M. J. et al. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophys. J. 120, 5530–5543 (2021).
Li, G. et al. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc. Natl Acad. Sci. USA 113, 14025–14030 (2016).
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
Merrill, A. H. Jr Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 111, 6387–6422 (2011).
Titeca, K. et al. A system-wide analysis of lipid transfer proteins delineates lipid mobility in human cells. Preprint at bioRxiv https://doi.org/10.1101/2023.12.21.572821 (2023).
Chang, C.-L. & Liou, J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J. Biol. Chem. 290, 14289–14301 (2015).
Lees, J. A. & Reinisch, K. M. Inter-organelle lipid transfer: a channel model for Vps13 and chorein-N motif proteins. Curr. Opin. Cell Biol. 65, 66–71 (2020).
Hanna, M., Guillén-Samander, A. & Camilli, P. D. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. Ann. Rev. Cell Dev. Biol. 39, 409–434 (2023).
Guillén-Samander, A. et al. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proc. Natl Acad. Sci. USA 119, e2205425119 (2022).
Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020).
Li, Y. E. et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J. Cell Biol. 220, e202103105 (2021).
Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).
van der Velden, L. M. et al. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases*. J. Biol. Chem. 285, 40088–40096 (2010).
Bryde, S. et al. CDC50 proteins are critical components of the human class-1 P 4-ATPase transport machinery. J. Biol. Chem. 285, 40562–40572 (2010).
Harayama, T. Metabolic bias: Lipid structures as determinants of their metabolic fates. Biochimie 215, 34–41 (2023).
Vance, J. E., Aasman, E. J. & Szarka, R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J. Biol. Chem. 266, 8241–8247 (1991).
Kaplan, M. R. & Simoni, R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol. 101, 441–445 (1985).
Wong, L. H., Čopič, A. & Levine, T. P. Advances on the transfer of lipids by lipid transfer proteins. Trends Biochem. Sci 42, 516–530 (2017).
Farley, S. E. et al. Trifunctional fatty acid derivatives: the impact of diazirine placement. Chem. Commun. 60, 6651–6654 (2024).