Chellappan, K. V., Erden, E. & Urey, H. Laser-based displays: a review. Appl. Opt. 49, F79–F98 (2010).
Xiong, J., Hsiang, E.-L., He, Z., Zhan, T. & Wu, S.-T. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10, 216 (2021).
Silverstein, B. D., Kurtz, A. F., Bietry, J. R. & Nothhard, G. E. 25.4: A laser‐based digital cinema projector. SID Symp. Dig. Tech. Pap. 42, 326–329 (2011).
Shin, M. C. et al. Chip-scale blue light phased array. Opt. Lett. 45, 1934–1937 (2020).
Poulton, C. V. et al. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 42, 21–24 (2017).
Sacher, W. D. et al. Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers. Opt. Express 27, 37400–37418 (2019).
Calafiore, G. et al. Holographic planar lightwave circuit for on-chip spectroscopy. Light Sci. Appl. 3, e203 (2014).
Zhang, Z., You, Z. & Chu, D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci. Appl. 3, e213 (2014).
Huang, Y., Liao, E., Chen, R. & Wu, S.-T. Liquid-crystal-on-silicon for augmented reality displays. Appl. Sci. 8, 2366 (2018).
Hoffman, D. M. & Lee, G. Temporal requirements for VR displays to create a more comfortable and immersive visual experience. Inf. Disp. 35, 9–39 (2019).
Pohl, L. et al. Challenges and Opportunities Applying Laser Beam Scanning Displays Based on Biaxial Resonantly Operated MEMS Scanners. In Proc. 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE) 976–981 (IEEE, 2024).
Reitterer, J. et al. Ultra-compact micro-electro-mechanical laser beam scanner for augmented reality applications. In Proc. Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) II, Vol. 11765, 33–43 (SPIE, 2021).
Komura, S., Onoda, K., Kijima, H. & Okuda, K. A laser backlight liquid crystal display with a narrow bezel. In Proc. Ultra-High-Definition Imaging Systems III, Vol. 11305, 10–19 (SPIE, 2020).
Vasconcelos, R., Zeuner, J. & Greganti, C. Laser light field display. In Proc. Advances in Display Technologies XII, Vol. 12024, 33–41 (SPIE, 2022).
Yang, D.-k. & Wu, S.-T. in Fundamentals of Liquid Crystal Devices 2nd edn, 213–233 (Wiley, 2014).
Tanaka, S. et al. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. Opt. Express 20, 28057 (2012).
Theurer, M. et al. Flip-chip integration of InP to SiN photonic integrated circuits. J. Light. Technol. 38, 2630–2636 (2019).
Kessel, P. F. V., Hornbeck, L. J., Meier, R. E. & Douglass, M. R. A MEMS-based projection display. Proc. IEEE 86, 1687–1704 (2021).
An, J. et al. Slim-panel holographic video display. Nat. Commun. 11, 5568 (2020).
Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–797 (2024).
Notaros, J., Raval, M., Notaros, M. & Watts, M. R. Integrated-phased-array-based visible-light near-eye holographic projector. In Proc. 2019 Conference on Lasers and Electro-Optics (CLEO) 1–2 (IEEE, 2019).
Kim, J. et al. Holographic glasses for virtual reality. In ACM SIGGRAPH 2022 Conference Proceedings 1–9 (ACM, 2022).
Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photon. 16, 834–842 (2022).
Jabbireddy, S., Zhang, Y., Peckerar, M., Dagenais, M. & Varshney, A. Sparse nanophotonic phased arrays for energy-efficient holographic displays. In Proc. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 553–562 (IEEE, 2022).
Jang, C., Bang, K., Chae, M., Lee, B. & Lanman, D. Waveguide holography for 3D augmented reality glasses. Nat. Commun. 15, 66 (2024).
Lee, J.-H., Cheng, I.-C., Hua, H. & Wu, S. Introduction to Flat Panel Displays 2nd edn, 15–37 (Wiley, 2020).
Wu, S.-T. & Wu, C.-S. Mixed-mode twisted nematic liquid crystal cells for reflective displays. Appl. Phys. Lett. 68, 1455–1457 (1996).
Robertson, A. R. The CIE 1976 color‐difference formulae. Color Res. Appl. 2, 7–11 (1977).
Bryant, A. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).
Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).
Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).
Smith, J. A., Francis, H., Navickaite, G. & Strain, M. J. SiN foundry platform for high performance visible light integrated photonics. Opt. Mater. Express 13, 458 (2023).
International Organization for Standardization (ISO).ISO 12640-4:2011 Graphic technology — Prepress digital data exchange. Part 4: Wide gamut display-referred standard colour image data [Adobe RGB (1998)/SCID].
International Organization for Standardization (ISO). ISO 12640-2:2004(en). Graphic technology — Prepress digital data exchange — Part 2: XYZ/sRGB encoded standard colour image data (XYZ/SCID).
Roelandt, S. et al. Human speckle perception threshold for still images from a laser projection system. Opt. Express 22, 23965–23979 (2014).
Tran, T.-T.-K., Svensen, Ø., Chen, X. & Akram, M. N. Speckle reduction in laser projection displays through angle and wavelength diversity. Appl. Opt. 55, 1267–1274 (2016).
Kuratomi, Y. et al. Speckle reduction mechanism in laser rear projection displays using a small moving diffuser. J. Opt. Soc. Am. A 27, 1812–1817 (2010).
Mizuyama, Y., Harrison, N. & Leto, R. Despeckling fly’s eye homogenizer for single mode laser diodes. Opt. Express 21, 9081–9090 (2013).
Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904–4907 (2021).
Zhang, Z. et al. Photonic integration platform for rubidium sensors and beyond. Optica 10, 752–753 (2023).
Peng, F. et al. 19‐1: Invited Paper: Zonal illuminated non‐emissive displays for AR glass. SID Symp. Dig. Tech. Pap. 55, 220–222 (2024).
Notaros, M. et al. Integrated visible-light liquid-crystal-based phase modulators. Opt. Express 30, 13790–13801 (2022).
Renaud, D. et al. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).
Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2022).
Xue, S. et al. Full-spectrum visible electro-optic modulator. Optica 10, 125–126 (2023).
Chen, H., Sung, J., Ha, T. & Park, Y. Locally pixel‐compensated backlight dimming on LED‐backlit LCD TV. J. Soc. Inf. Disp. 15, 981–988 (2007).
Yamaguchi, M. Light-field and holographic three-dimensional displays [Invited]. J. Opt. Soc. Am. A 33, 2348–2364 (2016).
Ratnam, K., Konrad, R., Lanman, D. & Zannoli, M. Retinal image quality in near-eye pupil-steered systems. Opt. Express 27, 38289–38311 (2019).
Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 1–16 (2017).