Thursday, August 21, 2025
No menu items!
HomeNatureFlat-panel laser displays through large-scale photonic integrated circuits

Flat-panel laser displays through large-scale photonic integrated circuits

  • Chellappan, K. V., Erden, E. & Urey, H. Laser-based displays: a review. Appl. Opt. 49, F79–F98 (2010).

    PubMed 

    Google Scholar
     

  • Xiong, J., Hsiang, E.-L., He, Z., Zhan, T. & Wu, S.-T. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10, 216 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silverstein, B. D., Kurtz, A. F., Bietry, J. R. & Nothhard, G. E. 25.4: A laser‐based digital cinema projector. SID Symp. Dig. Tech. Pap. 42, 326–329 (2011).


    Google Scholar
     

  • Shin, M. C. et al. Chip-scale blue light phased array. Opt. Lett. 45, 1934–1937 (2020).


    Google Scholar
     

  • Poulton, C. V. et al. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 42, 21–24 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sacher, W. D. et al. Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers. Opt. Express 27, 37400–37418 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calafiore, G. et al. Holographic planar lightwave circuit for on-chip spectroscopy. Light Sci. Appl. 3, e203 (2014).

    CAS 

    Google Scholar
     

  • Zhang, Z., You, Z. & Chu, D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci. Appl. 3, e213 (2014).


    Google Scholar
     

  • Huang, Y., Liao, E., Chen, R. & Wu, S.-T. Liquid-crystal-on-silicon for augmented reality displays. Appl. Sci. 8, 2366 (2018).

    CAS 

    Google Scholar
     

  • Hoffman, D. M. & Lee, G. Temporal requirements for VR displays to create a more comfortable and immersive visual experience. Inf. Disp. 35, 9–39 (2019).


    Google Scholar
     

  • Pohl, L. et al. Challenges and Opportunities Applying Laser Beam Scanning Displays Based on Biaxial Resonantly Operated MEMS Scanners. In Proc. 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE) 976–981 (IEEE, 2024).

  • Reitterer, J. et al. Ultra-compact micro-electro-mechanical laser beam scanner for augmented reality applications. In Proc. Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) II, Vol. 11765, 33–43 (SPIE, 2021).

  • Komura, S., Onoda, K., Kijima, H. & Okuda, K. A laser backlight liquid crystal display with a narrow bezel. In Proc. Ultra-High-Definition Imaging Systems III, Vol. 11305, 10–19 (SPIE, 2020).

  • Vasconcelos, R., Zeuner, J. & Greganti, C. Laser light field display. In Proc. Advances in Display Technologies XII, Vol. 12024, 33–41 (SPIE, 2022).

  • Yang, D.-k. & Wu, S.-T. in Fundamentals of Liquid Crystal Devices 2nd edn, 213–233 (Wiley, 2014).

  • Tanaka, S. et al. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. Opt. Express 20, 28057 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Theurer, M. et al. Flip-chip integration of InP to SiN photonic integrated circuits. J. Light. Technol. 38, 2630–2636 (2019).


    Google Scholar
     

  • Kessel, P. F. V., Hornbeck, L. J., Meier, R. E. & Douglass, M. R. A MEMS-based projection display. Proc. IEEE 86, 1687–1704 (2021).


    Google Scholar
     

  • An, J. et al. Slim-panel holographic video display. Nat. Commun. 11, 5568 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–797 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Notaros, J., Raval, M., Notaros, M. & Watts, M. R. Integrated-phased-array-based visible-light near-eye holographic projector. In Proc. 2019 Conference on Lasers and Electro-Optics (CLEO) 1–2 (IEEE, 2019).

  • Kim, J. et al. Holographic glasses for virtual reality. In ACM SIGGRAPH 2022 Conference Proceedings 1–9 (ACM, 2022).

  • Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photon. 16, 834–842 (2022).

    CAS 

    Google Scholar
     

  • Jabbireddy, S., Zhang, Y., Peckerar, M., Dagenais, M. & Varshney, A. Sparse nanophotonic phased arrays for energy-efficient holographic displays. In Proc. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 553–562 (IEEE, 2022).

  • Jang, C., Bang, K., Chae, M., Lee, B. & Lanman, D. Waveguide holography for 3D augmented reality glasses. Nat. Commun. 15, 66 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J.-H., Cheng, I.-C., Hua, H. & Wu, S. Introduction to Flat Panel Displays 2nd edn, 15–37 (Wiley, 2020).

  • Wu, S.-T. & Wu, C.-S. Mixed-mode twisted nematic liquid crystal cells for reflective displays. Appl. Phys. Lett. 68, 1455–1457 (1996).

    CAS 

    Google Scholar
     

  • Robertson, A. R. The CIE 1976 color‐difference formulae. Color Res. Appl. 2, 7–11 (1977).


    Google Scholar
     

  • Bryant, A. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).


    Google Scholar
     

  • Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, J. A., Francis, H., Navickaite, G. & Strain, M. J. SiN foundry platform for high performance visible light integrated photonics. Opt. Mater. Express 13, 458 (2023).

    CAS 

    Google Scholar
     

  • International Organization for Standardization (ISO).ISO 12640-4:2011 Graphic technology — Prepress digital data exchange. Part 4: Wide gamut display-referred standard colour image data [Adobe RGB (1998)/SCID].

  • International Organization for Standardization (ISO). ISO 12640-2:2004(en). Graphic technology — Prepress digital data exchange — Part 2: XYZ/sRGB encoded standard colour image data (XYZ/SCID).

  • Roelandt, S. et al. Human speckle perception threshold for still images from a laser projection system. Opt. Express 22, 23965–23979 (2014).

    PubMed 

    Google Scholar
     

  • Tran, T.-T.-K., Svensen, Ø., Chen, X. & Akram, M. N. Speckle reduction in laser projection displays through angle and wavelength diversity. Appl. Opt. 55, 1267–1274 (2016).

    PubMed 

    Google Scholar
     

  • Kuratomi, Y. et al. Speckle reduction mechanism in laser rear projection displays using a small moving diffuser. J. Opt. Soc. Am. A 27, 1812–1817 (2010).


    Google Scholar
     

  • Mizuyama, Y., Harrison, N. & Leto, R. Despeckling fly’s eye homogenizer for single mode laser diodes. Opt. Express 21, 9081–9090 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904–4907 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Photonic integration platform for rubidium sensors and beyond. Optica 10, 752–753 (2023).

    CAS 

    Google Scholar
     

  • Peng, F. et al. 19‐1: Invited Paper: Zonal illuminated non‐emissive displays for AR glass. SID Symp. Dig. Tech. Pap. 55, 220–222 (2024).


    Google Scholar
     

  • Notaros, M. et al. Integrated visible-light liquid-crystal-based phase modulators. Opt. Express 30, 13790–13801 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Renaud, D. et al. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2022).

    CAS 

    Google Scholar
     

  • Xue, S. et al. Full-spectrum visible electro-optic modulator. Optica 10, 125–126 (2023).

    CAS 

    Google Scholar
     

  • Chen, H., Sung, J., Ha, T. & Park, Y. Locally pixel‐compensated backlight dimming on LED‐backlit LCD TV. J. Soc. Inf. Disp. 15, 981–988 (2007).


    Google Scholar
     

  • Yamaguchi, M. Light-field and holographic three-dimensional displays [Invited]. J. Opt. Soc. Am. A 33, 2348–2364 (2016).


    Google Scholar
     

  • Ratnam, K., Konrad, R., Lanman, D. & Zannoli, M. Retinal image quality in near-eye pupil-steered systems. Opt. Express 27, 38289–38311 (2019).

    PubMed 

    Google Scholar
     

  • Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 1–16 (2017).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments