Friday, August 15, 2025
No menu items!
HomeNatureHuman emissions drive recent trends in North Pacific climate variations

Human emissions drive recent trends in North Pacific climate variations

  • Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).

    ADS 

    Google Scholar
     

  • Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004–1020 (1997).

    ADS 

    Google Scholar
     

  • Newman, M. et al. The Pacific decadal oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

    ADS 

    Google Scholar
     

  • Latif, M. & Barnett, T. P. Causes of decadal climate variability over the North Pacific and North America. Science 266, 634–637 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 423–552 (Cambridge Univ. Press, 2021).

  • Meehl, G. A., Hu, A. & Teng, H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun. 7, 11718 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earths Future 1, 19–32 (2013).

    ADS 

    Google Scholar
     

  • McCabe, G. J., Palecki, M. A. & Betancourt, J. L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl Acad. Sci. USA 101, 4136–4141 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borchert, L. F. et al. Skillful decadal prediction of unforced southern European summer temperature variations. Environ. Res. Lett. 16, 104017 (2021).

    ADS 

    Google Scholar
     

  • Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klavans, J. M., Cane, M. A., Clement, A. C. & Murphy, L. N. NAO predictability from external forcing in the late 20th century. npj Clim. Atmos. Sci. 4, 22 (2021).


    Google Scholar
     

  • Menary, M. B. et al. Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020).

    ADS 

    Google Scholar
     

  • He, C. et al. Tropical Atlantic multidecadal variability is dominated by external forcing. Nature 622, 521–527 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).

    ADS 

    Google Scholar
     

  • Wang, T., Otterå, O. H., Gao, Y. & Wang, H. The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Clim. Dyn. 39, 2917–2936 (2012).


    Google Scholar
     

  • Yeh, S.-W. et al. Changes in the variability of the North Pacific sea surface temperature caused by direct sulfate aerosol forcing in China in a coupled general circulation model. J. Geophys. Res. Atmos. 118, 1261–1270 (2013).

    ADS 

    Google Scholar
     

  • Boo, K.-O. et al. Influence of aerosols in multidecadal SST variability simulations over the North Pacific. J. Geophys. Res. Atmos. 120, 517–531 (2015).

    ADS 

    Google Scholar
     

  • Diao, C., Xu, Y. & Xie, S.-P. Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980-2020): separating the role of zonally asymmetric forcings. Atmos. Chem. Phys. 21, 18499–18518 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Dittus, A. J., Hawkins, E., Robson, J., Smith, D. M. & Wilcox, L. J. Drivers of recent North Pacific decadal variability: the role of aerosol forcing. Earths Future 9, e2021EF002249 (2021).

    ADS 

    Google Scholar
     

  • Liguori, G., McGregor, S., Arblaster, J. M., Singh, M. S. & Meehl, G. A. A joint role for forced and internally-driven variability in the decadal modulation of global warming. Nat. Commun. 11, 3827 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henley, B. J. et al. Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Environ. Res. Lett. 12, 044011 (2017).

    ADS 

    Google Scholar
     

  • Mann, M. E., Steinman, B. A. & Miller, S. K. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Commun. 11, 49 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y., Newman, M., Capotondi, A., Lorenzo, E. D. & Sun, D. Removing the effects of tropical dynamics from North Pacific climate variability. J. Clim. 34, 9249–9265 (2021).

    ADS 

    Google Scholar
     

  • Heede, U. K. & Fedorov, A. V. Colder Eastern Equatorial Pacific and Stronger Walker Circulation in the early 21st century: separating the forced response to global warming from natural variability. Geophys. Res. Lett. 50, e2022GL101020 (2023).

    ADS 

    Google Scholar
     

  • Solomon, A. & Newman, M. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat. Clim. Change 2, 691–699 (2012).

    ADS 

    Google Scholar
     

  • Bonfils, C. & Santer, B. D. Investigating the possibility of a human component in various Pacific decadal oscillation indices. Clim. Dyn. 37, 1457–1468 (2011).


    Google Scholar
     

  • Scaife, A. A. & Smith, D. A signal-to-noise paradox in climate science. npj Clim. Atmos. Sci. 1, 28 (2018).


    Google Scholar
     

  • Eade, R. et al. Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett. 41, 5620–5628 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waite, A. J. et al. Observational and model evidence for an important role for volcanic forcing driving Atlantic multidecadal variability over the last 600 years. Geophys. Res. Lett. 47, e2020GL089428 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Frankignoul, C., Sennéchael, N., Kwon, Y.-O. & Alexander, M. A. Influence of the meridional shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J. Clim. 24, 762–777 (2011).

    ADS 

    Google Scholar
     

  • Anderson, B. T. Empirical evidence linking the Pacific decadal precession to Kuroshio extension variability. J. Geophys. Res. Atmos. 124, 12845–12863 (2019).

    ADS 

    Google Scholar
     

  • Di Lorenzo, E. et al. Modes and mechanisms of Pacific decadal-scale variability. Annu. Rev. Marine Sci. 15, 249–275 (2023).

    ADS 

    Google Scholar
     

  • Fenske, T. & Clement, A. No internal connections detected between low frequency climate modes in North Atlantic and North Pacific basins. Geophys. Res. Lett. 49, e2022GL097957 (2022).

    ADS 

    Google Scholar
     

  • Broccoli, A. J., Lau, N.-C. & Nath, M. J. The cold ocean-warm land pattern: model simulation and relevance to climate change detection. J. Clim. 11, 2743–2763 (1998).

    ADS 

    Google Scholar
     

  • Laguë, M. M., Quetin, G. R. & Boos, W. R. Downwind control of oceanic air by land: the land wake and its sensitivity to CO2. Environ. Res. Lett. 17, 104045 (2022).

    ADS 

    Google Scholar
     

  • Kwon, Y.-O. & Deser, C. North Pacific decadal variability in the Community Climate System Model version 2. J. Clim. 20, 2416–2433 (2007).

    ADS 

    Google Scholar
     

  • Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O. & Frankignoul, C. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28, 1126–1147 (2015).

    ADS 

    Google Scholar
     

  • Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    ADS 

    Google Scholar
     

  • Maher, N. et al. The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences. Earth Syst. Dyn. 14, 413–431 (2023).

    ADS 

    Google Scholar
     

  • Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    ADS 

    Google Scholar
     

  • Lehner, F., Deser, C., Simpson, I. R. & Terray, L. Attributing the U.S. Southwest’s recent shift into drier conditions. Geophys. Res. Lett. 45, 6251–6261 (2018).

    ADS 

    Google Scholar
     

  • Seager, R. & Ting, M. Decadal drought variability over North America: mechanisms and predictability. Curr. Clim. Change Rep. 3, 141–149 (2017).


    Google Scholar
     

  • McCabe, G. J. & Dettinger, M. D. Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol. 19, 1399–1410 (1999).


    Google Scholar
     

  • Scaife, A. A. et al. Does increased atmospheric resolution improve seasonal climate predictions? Atmos. Sci. Lett. 20, e922 (2019).


    Google Scholar
     

  • Hardiman, S. C. et al. Missing eddy feedback may explain weak signal-to-noise ratios in climate predictions. npj Clim. Atmos. Sci. 5, 57 (2022).


    Google Scholar
     

  • Siqueira, L. & Kirtman, B. P. Atlantic near-term climate variability and the role of a resolved Gulf Stream. Geophys. Res. Lett. 43, 3964–3972 (2016).

    ADS 

    Google Scholar
     

  • Zhang, W., Kirtman, B., Siqueira, L., Clement, A. & Xia, J. Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and an eddying global coupled model. Clim. Dyn. 56, 2895–2913 (2021).


    Google Scholar
     

  • Murphy, L. N., Klavans, J. M., Clement, A. C. & Cane, M. A. Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy. J. Clim. 34, 4835–4849 (2021).

    ADS 

    Google Scholar
     

  • Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    ADS 

    Google Scholar
     

  • Jeffrey, S. et al. Australia’s CMIP5 submission using the CSIRO-Mk3.6 model. Aust. Meteor. Oceanogr. J. 63, 1–13 (2013).


    Google Scholar
     

  • Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).

    ADS 

    Google Scholar
     

  • Kirchmeier-Young, M. C., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in Arctic sea ice extent. J. Clim. 30, 553–571 (2017).

    ADS 

    Google Scholar
     

  • Sun, L., Alexander, M. & Deser, C. Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Clim. 31, 7823–7843 (2018).

    ADS 

    Google Scholar
     

  • Maher, N. et al. The Max Planck Institute Grand Ensemble: enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).

    ADS 

    Google Scholar
     

  • Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    ADS 

    Google Scholar
     

  • Delworth, T. L. et al. SPEAR: the next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst. 12, e2019MS001895 (2020).

    ADS 

    Google Scholar
     

  • Bonnet, R. et al. Presentation and evaluation of the IPSL-CM6A-LR ensemble of extended historical simulations. J. Adv. Model.Earth Syst. 13, e2021MS002565 (2021).

    ADS 

    Google Scholar
     

  • Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Fyfe, J. C., Kharin, V. V., Santer, B. D., Cole, J. N. S. & Gillett, N. P. Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proc. Natl Acad. Sci. USA 118, e2016549118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziehn, T. et al. The Australian Earth system model: ACCESS-ESM1.5. J. S. Hemi. Earth Syst. Sci. 70, 193–214 (2020).


    Google Scholar
     

  • Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).

    ADS 

    Google Scholar
     

  • Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).

    ADS 

    Google Scholar
     

  • Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115, 15–40 (2014).

    ADS 

    Google Scholar
     

  • Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    ADS 

    Google Scholar
     

  • Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    ADS 

    Google Scholar
     

  • Mantua, N. J. & Hare, S. R. The Pacific decadal oscillation. J. Oceanogr. 58, 35–44 (2002).


    Google Scholar
     

  • Trenberth, K. E. & Hurrell, J. W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 9, 303–319 (1994).


    Google Scholar
     

  • Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).

    ADS 

    Google Scholar
     

  • MATLAB. Signal Processing Toolbox (MathWorks, 2023).

  • Moron V. WEACLIM. https://www.mathworks.com/matlabcentral/fileexchange/10881-weaclim. (MATLAB Central File Exchange, 2025).

  • Klavans, J. M. jeklavans/PDO_2024: human emissions drive recent trends in North Pacific climate variations (v1.0). Zenodo https://doi.org/10.5281/zenodo.15658555 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments