Erwin, D. H. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 147, dev182899 (2020).
Bone, Q., Kapp, H. & Pierrot-Bults, A. C. The Biology of Chaetognaths (Oxford Univ. Press, 1991).
Rieger, V. et al. Immunohistochemical analysis and 3D reconstruction of the cephalic nervous system in Chaetognatha: insights into the evolution of an early bilaterian brain? Invertebr. Biol. 129, 77–104 (2010).
Müller, C. H. G., Rieger, V., Perez, Y. & Harzsch, S. Immunohistochemical and ultrastructural studies on ciliary sense organs of arrow worms (Chaetognatha). Zoomorphology 133, 167–189 (2014).
Marlétaz, F., Peijnenburg, K. T. C. A., Goto, T., Satoh, N. & Rokhsar, D. S. A new spiralian phylogeny places the enigmatic arrow worms among Gnathiferans. Curr. Biol. 29, 312–318.e3 (2019).
Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. Biol. Sci. 286, 20190831 (2019).
Martín-Zamora, F. M. et al. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 615, 105–110 (2023).
Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).
Telford, M. J. & Holland, P. W. Evolution of 28S ribosomal DNA in chaetognaths: duplicate genes and molecular phylogeny. J. Mol. Evol. 44, 135–144 (1997).
Marlétaz, F. et al. Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol. 9, R94 (2008).
Park, T.-Y. S. et al. A giant stem-group chaetognath. Sci. Adv. 10, eadi6678 (2024).
Vinther, J. & Parry, L. A. Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between Gnathiferans and Chaetognaths. Curr. Biol. 29, 881–888.e1 (2019).
Satoh, N. Chordate Origins and Evolution (Elsevier, 2016).
Budd, G. E. & Telford, M. J. The origin and evolution of arthropods. Nature 457, 812–817 (2009).
Chen, H. et al. A Cambrian crown annelid reconciles phylogenomics and the fossil record. Nature 583, 249–252 (2020).
John, C. C. Memoirs: habits, structure, and development of Spadella cephaloptera. Q. J. Microsc. Sci. 75, 625–696 (1933).
Telford, M. J. & Holland, P. W. The phylogenetic affinities of the chaetognaths: a molecular analysis. Mol. Biol. Evol. 10, 660–676 (1993).
Fröbius, A. C. & Funch, P. Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans. Nat. Commun. 8, 9 (2017).
Papillon, D., Perez, Y., Fasano, L., Le Parco, Y. & Caubit, X. Hox gene survey in the chaetognath Spadella cephaloptera: evolutionary implications. Dev. Genes Evol. 213, 142–148 (2003).
Bekkouche, N. & Gąsiorowski, L. Careful amendment of morphological data sets improves phylogenetic frameworks: re-evaluating placement of the fossil Amiskwia sagittiformis. J. Syst. Palaeontol. 20, 1–14 (2022).
Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).
Parey, E. et al. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat. Ecol. Evol. 8, 1505–1521 (2024).
Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).
Luo, Y.-J. et al. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat. Commun. 6, 8301 (2015).
Simion, P. et al. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. Sci. Adv. 7, eabg4216 (2021).
Flot, J.-F. et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500, 453–457 (2013).
Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).
Goto, T. & Yoshida, M. The mating sequence of the benthic arrowworm Spadella schizoptera. Biol. Bull. 169, 328–333 (1985).
Ren-feng, W. Analysis of chromosome karyotypes in Chaetognath Sagitta crassa. J. Dalian Fish. Univ. 26, 260–263 (2011).
Lewin, T. D. et al. Fusion, fission, and scrambling of the bilaterian genome in Bryozoa. Genome Res. 35, 78–92 (2025).
Guijarro-Clarke, C., Holland, P. W. H. & Paps, J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat. Ecol. Evol. 4, 519–523 (2020).
Senaratne, A. P. et al. Formation of the CenH3-deficient holocentromere in Lepidoptera avoids active chromatin. Curr. Biol. 31, 173–181.e7 (2021).
Hofstatter, P. G. et al. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185, 3153–3168.e18 (2022).
Lewin, T. D., Liao, I. J.-Y. & Luo, Y.-J. Annelid comparative genomics and the evolution of massive lineage-specific genome rearrangement in bilaterians. Mol. Biol. Evol. 41, msae172 (2024).
Muller, H., Gil, J. Jr & Drinnenberg, I. A. The impact of centromeres on spatial genome architecture. Trends Genet. 35, 565–578 (2019).
Houtain, A. et al. Transgenerational chromosome repair in the asexual bdelloid rotifer Adineta vaga. Preprint at bioRxiv https://doi.org/10.1101/2024.01.25.577190 (2024).
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
Álvarez-Campos, P. et al. Annelid adult cell type diversity and their pluripotent cellular origins. Nat. Commun. 15, 3194 (2024).
Piovani, L. et al. Single-cell atlases of two lophotrochozoan larvae highlight their complex evolutionary histories. Sci. Adv. 9, eadg6034 (2023).
Li, J. et al. Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types. Nat. Genet. 54, 1711–1720 (2022).
Rieger, V. et al. Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Dev. Growth Differ. 53, 740–759 (2011).
Wollesen, T., Rodriguez Monje, S. V., Oel, A. P. & Arendt, D. Characterization of eyes, photoreceptors, and opsins in developmental stages of the arrow worm Spadella cephaloptera (Chaetognatha). J. Exp. Zool. B 340, 342–353 (2023).
Wu, L. et al. Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands. Nat. Commun. 11, 4171 (2020).
Yasuda, E., Goto, T., Makabe, K. W. & Satoh, N. Expression of actin genes in the arrow worm Paraspadella gotoi (Chaetognatha). Zoolog. Sci. 14, 953–960 (1997).
Carré, D., Djediat, C. & Sardet, C. Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 129, 661–670 (2002).
Piovani, L. & Marlétaz, F. Single-cell transcriptomics refuels the exploration of spiralian biology. Brief. Funct. Genomics 22, 517–524 (2023).
Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).
Goto, T. & Yoshida, M. in Nervous Systems in Invertebrates (ed. Ali, M. A.) 461–481 (Springer, 1987).
Ahnelt, P. Chaetognatha. in Biology of the Integument: Invertebrates (eds. Bereiter-Hahn, J., Matoltsy, A. G. & Richards, K. S.) 746–755 (Springer, 1984).
Valencia-Montoya, W. A., Pierce, N. E. & Bellono, N. W. Evolution of sensory receptors. Annu. Rev. Cell Dev. Biol. 40, 353–379 (2024).
Vakirlis, N., Carvunis, A.-R. & McLysaght, A. Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. eLife 9, e53500 (2020).
Maeso, I., Acemel, R. D. & Gómez-Skarmeta, J. L. Cis-regulatory landscapes in development and evolution. Curr. Opin. Genet. Dev. 43, 17–22 (2017).
de Mendoza, A. et al. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat. Ecol. Evol. 3, 1464–1473 (2019).
Rošić, S. et al. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat. Genet. 50, 452–459 (2018).
Kim, I. V. et al. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 642, 1097–1105 (2025).
Guynes, K. et al. Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria. Genome Biol. 25, 204 (2024)
Schwaiger, M. et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 24, 639–650 (2014).
Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).
Zaslaver, A., Baugh, L. R. & Sternberg, P. W. Metazoan operons accelerate recovery from growth-arrested states. Cell 145, 981–992 (2011).
Douris, V., Telford, M. J. & Averof, M. Evidence for multiple independent origins of trans-splicing in Metazoa. Mol. Biol. Evol. 27, 684–693 (2010).
Danks, G. B. et al. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. Mol. Biol. Evol. 32, 585–599 (2015).
Wilson, C. G., Pieszko, T., Nowell, R. W. & Barraclough, T. G. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet. 40, 422–436 (2024).
Morel, B., Kozlov, A. M., Stamatakis, A. & Szöllősi, G. J. GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol. Biol. Evol. 37, 2763–2774 (2020).
Goto, T. & Yoshida, M. Growth and reproduction of the benthic arrowworm Paraspadella gotoi (Chaetognatha) in laboratory culture. Invertebr. Reprod. Dev. 32, 201–207 (1997).
Green, M. R. & Sambrook, J. Molecular Cloning. A Laboratory Manual 4th edn (2012).
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
Chapman, J. A. et al. Meraculous: de novo genome assembly with short paired-end reads. PLoS ONE 6, e23501 (2011).
Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).
Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020).
Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
Klopfenstein, D. V. et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci Rep. 8, 10872 (2018).
Derelle, R., Philippe, H. & Colbourne, J. K. Broccoli: combining phylogenetic and network analyses for orthology assignment. Mol. Biol. Evol. 37, 3389–3396 (2020).
Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
Steenwyk, J. L., Buida, T. J. 3rd, Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Barrera-Redondo, J., Lotharukpong, J. S., Drost, H.-G. & Coelho, S. M. Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra. Genome Biol. 24, 54 (2023).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
Benton M. J., Donoghue P. C. J. & Asher R. J. in The Timetree Of Life (ed. Kumar, S. B. H.) 35–86 (Oxford Univ. Press, 2009).
Rota-Stabelli, O., Daley, A. C. & Pisani, D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 23, 392–398 (2013).
Vannier, J., Steiner, M., Renvoisé, E., Hu, S.-X. & Casanova, J.-P. Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proc. Biol. Sci. 274, 627–633 (2007).
Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518 (2021).
Matus, D. Q., Halanych, K. M. & Martindale, M. Q. The Hox gene complement of a pelagic chaetognath, Flaccisagitta enflata. Integr. Comp. Biol. 47, 854 (2007).
Open2C, et al. Pairtools: from sequencing data to chromosome contacts. PLoS Comput. Biol. 20, e1012164 (2024).
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).
Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).
Marlétaz, F. et al. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. Cell Genomics 3, 100295 (2023).
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
Wenzel, M. A., Müller, B. & Pettitt, J. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-seq data. BMC Bioinformatics 22, 140 (2021).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).
Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-specificity metrics. Brief. Bioinformatics 18, 205–214 (2016).
García-Castro, H. et al. ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol. 22, 89 (2021).
Hejnol, A. & Martindale, M. Q. Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456, 382–386 (2008).
Hejnol, A. In situ protocol for embryos and juveniles of Convolutriloba longifissura. Protoc. Exch. https://doi.org/10.1038/nprot.2008.201 (2008).
Marlétaz, F. et al. The genomic origin of the unique chaetognath body plan [Data set]. Zenodo https://doi.org/10.5281/zenodo.13936459 (2024).
Gąsiorowski, L., Martín-Durán, J. M. & Hejnolin, A. in Hox Modules in Evolution and Development (ed. Ferrier, D. E. K.) 177–194 (CRC, 2023).