Keith, D. W. Photophoretic levitation of engineered aerosols for geoengineering. Proc. Natl Acad. Sci. USA 107, 16428–16431 (2010).
Azadi, M. et al. Controlled levitation of nanostructured thin films for Sun-powered near-space flight. Sci. Adv. 7, eabe1127 (2021).
Lu, Z., Aldan, G., Levin, D., Campbell, M. F. & Bargatin, I. Lightweight photophoretic flyers with germanium coatings as selective absorbers. Phys. Rev. Appl. 21, 044019 (2024).
Cortes, J. et al. Photophoretic levitation of macroscopic nanocardboard plates. Adv. Mater. 32, 1906878 (2020).
Kim, J. et al. Ultralight and ultra-stiff nano-cardboard panels: mechanical analysis, characterization, and design principles. Acta Mater. 248, 118782 (2023).
Celenza, T., Eskenazi, A. & Bargatin, I. Three-dimensional photophoretic aircraft made from ultralight porous materials can carry kilogram-scale payloads in the mesosphere. Phys. Rev. Appl. 22, 054081 (2024).
Benford, G. & Benford, J. An aero-spacecraft for the far upper atmosphere supported by microwaves. Acta Astronaut. 56, 529–535 (2005).
Sharipov, F. & Schafer, B. C. Radiometric forces exerted on a perforated membrane. Phys. Fluids 36, 117155 (2024).
Smalley, D. E. et al. A photophoretic-trap volumetric display. Nature 553, 486–490 (2018).
Gupta, N. K. & Gianchandani, Y. B. Thermal transpiration in zeolites: a mechanism for motionless gas pumps. Appl. Phys. Lett. 93, 193511 (2008).
Redding, B., Hill, S. C., Alexson, D., Wang, C. & Pan, Y.-L. Photophoretic trapping of airborne particles using ultraviolet illumination. Opt. Express 23, 3630–3639 (2015).
Cheremisin, A. A., Vassilyev, Yu. V. & Horvath, H. Gravito-photophoresis and aerosol stratification in the atmosphere. J. Aerosol Sci. 36, 1277–1299 (2005).
Rohatschek, H. & Horvath, H. Magneto-photophoresis and mesospheric particles. J. Geophys. Res. 115, D24208 (2010).
Cheremisin, A. A. Photophoresis of aerosol particles with nonuniform gas–surface accommodation in the free molecular regime. J. Aerosol Sci. 136, 15–35 (2019).
Sharipov, F. & Moldover, M. R. Energy accommodation coefficient extracted from acoustic resonator experiments. J. Vac. Sci. Technol. A 34, 061604 (2016).
Horvath, H. Photophoresis—a forgotten force?? KONA Powder Part. J. 31, 181–199 (2014).
Reynolds, O. On certain dimensional properties of matter in the gaseous state. Phil. Trans. R. Soc. 170, 727–845 (1879).
Bird, G. A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford Unive. Press, 1994).
Cappella, A. et al. High temperature thermal conductivity of amorphous Al2O3 thin films grown by low temperature ALD. Adv. Energy Mater. 15, 1046–1050 (2013).
Ventura, A., Gimelshein, N., Gimelshein, S. & Ketsdever, A. Effect of vane thickness on radiometric force. J. Fluid Mech. 735, 684–704 (2013).
Gimelshein, N. E., Gimelshein, S. F., Ketsdever, A. D. & Selden, N. P. Shear force in radiometric flows. AIP Conf. Proc. 1333, 661–666 (2011).
Selden, N., Gimelshein, N., Gimelshein, S. & Ketsdever, A. Analysis of accommodation coefficients of noble gases on aluminum surface with an experimental/computational method. Phys. Fluids 21, 073101 (2009).
Wachman, H. Y. The thermal accommodation coefficient: a critical survey. ARS J. 32, 2–12 (1962).
Sharipov, F. & Bertoldo, G. Heat transfer through a rarefied gas confined between two coaxial cylinders with high radius ratio. J. Vac. Sci. Technol. A 24, 2087–2093 (2006).
Trott, W. M., Castañeda, J. N., Torczynski, J. R., Gallis, M. A. & Rader, D. J. An experimental assembly for precise measurement of thermal accommodation coefficients. Rev. Sci. Instrum. 82, 035120 (2011).
Bakanov, S. P. Thermophoresis in gases at small Knudsen numbers. Aerosol Sci. Technol. 15, 77–92 (1991).
Rohatschek, H. Semi-empirical model of photophoretic forces for the entire range of pressures. J. Aerosol Sci. 26, 717–734 (1995).
Li, Z., Palacios, E., Butun, S., Kocer, H. & Aydin, K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep. 5, 15137 (2015).
Mattiucci, N., Bloemer, M. J., Aközbek, N. & D’Aguanno, G. Impedance matched thin metamaterials make metals absorbing. Sci. Rep. 3, 3203 (2013).
Gimelshein, S. F., Gimelshein, N. E., Ketsdever, A. D. & Selden, N. P. Analysis and applications of radiometeric forces in rarefied gas flows. In 27th International Symposium on Rarefied Gas Dynamics 693–700 (AIP, 2011).
Tantos, C. Polyatomic thermal creep flows through long microchannels at large temperature ratios. J. Vac. Sci. Technol. A 37, 051602 (2019).
Lu, Z. et al. Minimizing the ground effect for photophoretically levitating disks. Phys. Rev. Appl. 19, 044004 (2023).
DeCoster, M. E. et al. Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films. Thin Solid Films 650, 71–77 (2018).
Perrakis, G. et al. Submicron organic–inorganic hybrid radiative cooling coatings for stable, ultrathin, and lightweight solar cells. ACS Photon. 9, 1327–1337 (2022).
Ilic, O. & Atwater, H. A. Nanophotonic heterostructures for efficient propulsion and radiative cooling of relativistic light sails. Nano Lett. 18, 5583–5589 (2018).
Xue, Y. et al. Preparation and spectral properties of solar selective absorbing MoSi2–Al2O3 coating. Phys. Status Solidi A 211, 1519–1524 (2014).
Ko, T.-J. et al. Wafer-scale 2D PtTe2 layers-enabled Kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness. Appl. Mater. Today 20, 100718 (2020).
Lee, S. et al. Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting. Nat. Commun. 14, 3889 (2023).
Rodenbeck, C. T. et al. Microwave and millimeter wave power beaming. IEEE J. Microw. 1, 229–259 (2021).
Algamili, A. S. et al. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res. Lett. 16, 16 (2021).
Ruiz-Díez, V. et al. Piezoelectric MEMS linear motor for nanopositioning applications. Actuators 10, 36 (2021).
Littleton, O. NASA scientific balloons ready for flights over Antarctica. NASA https://www.nasa.gov/missions/scientific-balloons/nasa-scientific-balloons-ready-for-flights-over-antarctica/ (2023).
Wu, X. et al. A 0.04MM 3 16NW wireless and batteryless sensor system with integrated Cortex-M0+ processor and optical communication for cellular temperature measurement. In Symposium on VLSI Circuits 191–192 (IEEE, 2018).
Chen, S. et al. Multi-sized planar capacitive pressure sensor with ultra-high sensitivity. Nano Energy 87, 106178 (2021).
He, P. et al. Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10, 5599–5606 (2018).
Garrity, J. & Husar, A. Digital Connectivity and Low Earth Orbit Satellite: Constellations Opportunities for Asia and the Pacific (ADB, 2021); https://doi.org/10.22617/WPS210156-2.
McCleese, D. J. et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res. 115, 2010JE003677 (2010).
Guzewich, S. D., Talaat, E. R., Toigo, A. D., Waugh, D. W. & McConnochie, T. H. High-altitude dust layers on Mars: observations with the thermal emission spectrometer. J. Geophys. Res. Planets 118, 1177–1194 (2013).
Rohatschek, H. Photophoretic levitation of carbonaceous aerosols. J. Aerosol Sci. 20, 903–906 (1989).
Kumar, P., Wiedmann, M. K., Winter, C. H. & Avrutsky, I. Optical properties of Al2O3 thin films grown by atomic layer deposition. Appl. Opt. 48, 5407 (2009).