Thursday, August 14, 2025
No menu items!
HomeNaturePhotophoretic flight of perforated structures in near-space conditions

Photophoretic flight of perforated structures in near-space conditions

  • Keith, D. W. Photophoretic levitation of engineered aerosols for geoengineering. Proc. Natl Acad. Sci. USA 107, 16428–16431 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azadi, M. et al. Controlled levitation of nanostructured thin films for Sun-powered near-space flight. Sci. Adv. 7, eabe1127 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Z., Aldan, G., Levin, D., Campbell, M. F. & Bargatin, I. Lightweight photophoretic flyers with germanium coatings as selective absorbers. Phys. Rev. Appl. 21, 044019 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Cortes, J. et al. Photophoretic levitation of macroscopic nanocardboard plates. Adv. Mater. 32, 1906878 (2020).

    CAS 

    Google Scholar
     

  • Kim, J. et al. Ultralight and ultra-stiff nano-cardboard panels: mechanical analysis, characterization, and design principles. Acta Mater. 248, 118782 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Celenza, T., Eskenazi, A. & Bargatin, I. Three-dimensional photophoretic aircraft made from ultralight porous materials can carry kilogram-scale payloads in the mesosphere. Phys. Rev. Appl. 22, 054081 (2024).

    CAS 

    Google Scholar
     

  • Benford, G. & Benford, J. An aero-spacecraft for the far upper atmosphere supported by microwaves. Acta Astronaut. 56, 529–535 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Sharipov, F. & Schafer, B. C. Radiometric forces exerted on a perforated membrane. Phys. Fluids 36, 117155 (2024).

    CAS 

    Google Scholar
     

  • Smalley, D. E. et al. A photophoretic-trap volumetric display. Nature 553, 486–490 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, N. K. & Gianchandani, Y. B. Thermal transpiration in zeolites: a mechanism for motionless gas pumps. Appl. Phys. Lett. 93, 193511 (2008).

    ADS 

    Google Scholar
     

  • Redding, B., Hill, S. C., Alexson, D., Wang, C. & Pan, Y.-L. Photophoretic trapping of airborne particles using ultraviolet illumination. Opt. Express 23, 3630–3639 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheremisin, A. A., Vassilyev, Yu. V. & Horvath, H. Gravito-photophoresis and aerosol stratification in the atmosphere. J. Aerosol Sci. 36, 1277–1299 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Rohatschek, H. & Horvath, H. Magneto-photophoresis and mesospheric particles. J. Geophys. Res. 115, D24208 (2010).

  • Cheremisin, A. A. Photophoresis of aerosol particles with nonuniform gas–surface accommodation in the free molecular regime. J. Aerosol Sci. 136, 15–35 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Sharipov, F. & Moldover, M. R. Energy accommodation coefficient extracted from acoustic resonator experiments. J. Vac. Sci. Technol. A 34, 061604 (2016).

    PubMed 

    Google Scholar
     

  • Horvath, H. Photophoresis—a forgotten force?? KONA Powder Part. J. 31, 181–199 (2014).


    Google Scholar
     

  • Reynolds, O. On certain dimensional properties of matter in the gaseous state. Phil. Trans. R. Soc. 170, 727–845 (1879).

    ADS 

    Google Scholar
     

  • Bird, G. A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford Unive. Press, 1994).

  • Cappella, A. et al. High temperature thermal conductivity of amorphous Al2O3 thin films grown by low temperature ALD. Adv. Energy Mater. 15, 1046–1050 (2013).

    CAS 

    Google Scholar
     

  • Ventura, A., Gimelshein, N., Gimelshein, S. & Ketsdever, A. Effect of vane thickness on radiometric force. J. Fluid Mech. 735, 684–704 (2013).

    ADS 

    Google Scholar
     

  • Gimelshein, N. E., Gimelshein, S. F., Ketsdever, A. D. & Selden, N. P. Shear force in radiometric flows. AIP Conf. Proc. 1333, 661–666 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Selden, N., Gimelshein, N., Gimelshein, S. & Ketsdever, A. Analysis of accommodation coefficients of noble gases on aluminum surface with an experimental/computational method. Phys. Fluids 21, 073101 (2009).

    ADS 

    Google Scholar
     

  • Wachman, H. Y. The thermal accommodation coefficient: a critical survey. ARS J. 32, 2–12 (1962).

    CAS 

    Google Scholar
     

  • Sharipov, F. & Bertoldo, G. Heat transfer through a rarefied gas confined between two coaxial cylinders with high radius ratio. J. Vac. Sci. Technol. A 24, 2087–2093 (2006).

    CAS 

    Google Scholar
     

  • Trott, W. M., Castañeda, J. N., Torczynski, J. R., Gallis, M. A. & Rader, D. J. An experimental assembly for precise measurement of thermal accommodation coefficients. Rev. Sci. Instrum. 82, 035120 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Bakanov, S. P. Thermophoresis in gases at small Knudsen numbers. Aerosol Sci. Technol. 15, 77–92 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Rohatschek, H. Semi-empirical model of photophoretic forces for the entire range of pressures. J. Aerosol Sci. 26, 717–734 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Li, Z., Palacios, E., Butun, S., Kocer, H. & Aydin, K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep. 5, 15137 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattiucci, N., Bloemer, M. J., Aközbek, N. & D’Aguanno, G. Impedance matched thin metamaterials make metals absorbing. Sci. Rep. 3, 3203 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimelshein, S. F., Gimelshein, N. E., Ketsdever, A. D. & Selden, N. P. Analysis and applications of radiometeric forces in rarefied gas flows. In 27th International Symposium on Rarefied Gas Dynamics 693–700 (AIP, 2011).

  • Tantos, C. Polyatomic thermal creep flows through long microchannels at large temperature ratios. J. Vac. Sci. Technol. A 37, 051602 (2019).


    Google Scholar
     

  • Lu, Z. et al. Minimizing the ground effect for photophoretically levitating disks. Phys. Rev. Appl. 19, 044004 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • DeCoster, M. E. et al. Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films. Thin Solid Films 650, 71–77 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Perrakis, G. et al. Submicron organic–inorganic hybrid radiative cooling coatings for stable, ultrathin, and lightweight solar cells. ACS Photon. 9, 1327–1337 (2022).

    CAS 

    Google Scholar
     

  • Ilic, O. & Atwater, H. A. Nanophotonic heterostructures for efficient propulsion and radiative cooling of relativistic light sails. Nano Lett. 18, 5583–5589 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, Y. et al. Preparation and spectral properties of solar selective absorbing MoSi2–Al2O3 coating. Phys. Status Solidi A 211, 1519–1524 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Ko, T.-J. et al. Wafer-scale 2D PtTe2 layers-enabled Kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness. Appl. Mater. Today 20, 100718 (2020).


    Google Scholar
     

  • Lee, S. et al. Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting. Nat. Commun. 14, 3889 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodenbeck, C. T. et al. Microwave and millimeter wave power beaming. IEEE J. Microw. 1, 229–259 (2021).


    Google Scholar
     

  • Algamili, A. S. et al. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res. Lett. 16, 16 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruiz-Díez, V. et al. Piezoelectric MEMS linear motor for nanopositioning applications. Actuators 10, 36 (2021).


    Google Scholar
     

  • Littleton, O. NASA scientific balloons ready for flights over Antarctica. NASA https://www.nasa.gov/missions/scientific-balloons/nasa-scientific-balloons-ready-for-flights-over-antarctica/ (2023).

  • Wu, X. et al. A 0.04MM 3 16NW wireless and batteryless sensor system with integrated Cortex-M0+ processor and optical communication for cellular temperature measurement. In Symposium on VLSI Circuits 191–192 (IEEE, 2018).

  • Chen, S. et al. Multi-sized planar capacitive pressure sensor with ultra-high sensitivity. Nano Energy 87, 106178 (2021).

    CAS 

    Google Scholar
     

  • He, P. et al. Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10, 5599–5606 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Garrity, J. & Husar, A. Digital Connectivity and Low Earth Orbit Satellite: Constellations Opportunities for Asia and the Pacific (ADB, 2021); https://doi.org/10.22617/WPS210156-2.

  • McCleese, D. J. et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res. 115, 2010JE003677 (2010).


    Google Scholar
     

  • Guzewich, S. D., Talaat, E. R., Toigo, A. D., Waugh, D. W. & McConnochie, T. H. High-altitude dust layers on Mars: observations with the thermal emission spectrometer. J. Geophys. Res. Planets 118, 1177–1194 (2013).

    ADS 

    Google Scholar
     

  • Rohatschek, H. Photophoretic levitation of carbonaceous aerosols. J. Aerosol Sci. 20, 903–906 (1989).

    ADS 

    Google Scholar
     

  • Kumar, P., Wiedmann, M. K., Winter, C. H. & Avrutsky, I. Optical properties of Al2O3 thin films grown by atomic layer deposition. Appl. Opt. 48, 5407 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments