Thursday, August 14, 2025
No menu items!
HomeNatureNASP modulates histone turnover to drive PARP inhibitor resistance

NASP modulates histone turnover to drive PARP inhibitor resistance

  • Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dias, M. P., Moser, S. C., Ganesan, S. & Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 18, 773–791 (2021).

    PubMed 

    Google Scholar
     

  • DiSilvestro, P. et al. Overall survival with maintenance olaparib at a 7-year follow-up in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation: the SOLO1/GOG 3004 trial. J. Clin. Oncol. 41, 609–617 (2023).

    PubMed 

    Google Scholar
     

  • Dobzhansky, T. Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscura. Genetics 31, 269–290 (1946).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bridges, C. B. The origin of variations in sexual and sex-limited characters. Am. Nat. 56, 51–63 (1922).


    Google Scholar
     

  • Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, D. & Kraus, W. L. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol. Cell 82, 2315–2334 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C. & Mandel, P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc. Natl Acad. Sci. USA 79, 3423–3427 (1982).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ledermann, J. et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 15, 852–861 (2014).

    PubMed 

    Google Scholar
     

  • Pujade-Lauraine, E. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1274–1284 (2017).

    PubMed 

    Google Scholar
     

  • Mateos-Gomez, P. A. et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518, 258–262 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zatreanu, D. et al. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 3636 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paes Dias, M. et al. Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps. Mol. Cell 81, 4692–4708.e9 (2021).

    PubMed 

    Google Scholar
     

  • Zhou, J. et al. A first-in-class polymerase θ inhibitor selectively targets homologous-recombination-deficient tumors. Nat. Cancer 2, 598–610 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zong, D. et al. BRCA1 haploinsufficiency is masked by RNF168-mediated chromatin ubiquitylation. Mol. Cell 73, 1267–1281.e7 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boon, N. J. et al. DNA damage induces p53-independent apoptosis through ribosome stalling. Science 384, 785–792 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Adelman, C. A. et al. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature 502, 381–384 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Setton, J. et al. Germline RAD51B variants confer susceptibility to breast and ovarian cancers deficient in homologous recombination. NPJ Breast Cancer 7, 135 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazouzi, A. et al. FIRRM/C1orf112 mediates resolution of homologous recombination intermediates in response to DNA interstrand crosslinks. Sci. Adv. 9, eadf4409 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbs-Seymour, I., Fontana, P., Rack, J. G. M. & Ahel, I. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell 62, 432–442 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammond, C. M. et al. DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network. Mol. Cell 81, 2533–2548.e9 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook, A. J., Gurard-Levin, Z. A., Vassias, I. & Almouzni, G. A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3–H4 in the histone supply chain. Mol. Cell 44, 918–927 (2011).

    PubMed 

    Google Scholar
     

  • Osakabe, A. et al. Nucleosome formation activity of human somatic nuclear autoantigenic sperm protein (sNASP). J. Biol. Chem. 285, 11913–11921 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hormazabal, J. et al. Chaperone mediated autophagy contributes to the newly synthesized histones H3 and H4 quality control. Nucleic Acids Res. 50, 1875–1887 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson, R. T. et al. Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J. Biol. Chem. 275, 30378–30386 (2000).

    PubMed 

    Google Scholar
     

  • Liu, C. P. et al. Distinct histone H3–H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones. Genes Dev. 35, 1610–1624 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, H. et al. NASP maintains histone H3–H4 homeostasis through two distinct H3 binding modes. Nucleic Acids Res. 50, 5349–5368 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaspers, J. E. et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3, 68–81 (2013).

    PubMed 

    Google Scholar
     

  • Staaf, J. et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25, 1526–1533 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey-Jones, E. et al. Longitudinal profiling identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer. Ann. Oncol. 35, 364–380 (2024).

    PubMed 

    Google Scholar
     

  • Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart-Morgan, K. R. & Groth, A. Profiling chromatin accessibility on replicated DNA with repli-ATAC-seq. Methods Mol. Biol. 2611, 71–84 (2023).

    PubMed 

    Google Scholar
     

  • Lim, P. X., Zaman, M., Feng, W. & Jasin, M. BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. Mol. Cell 84, 447–462.e10 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, Y. et al. RNF8 mediates histone H3 ubiquitylation and promotes glycolysis and tumorigenesis. J. Exp. Med. 214, 1843–1855 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, R. K., Kabbaj, M. H., Paik, J. & Gunjan, A. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat. Cell Biol. 11, 925–933 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shroff, M., Knebel, A., Toth, R. & Rouse, J. A complex comprising C15ORF41 and codanin-1: the products of two genes mutated in congenital dyserythropoietic anaemia type I (CDA-I). Biochem. J. 477, 1893–1905 (2020).

    PubMed 

    Google Scholar
     

  • Hogan, A. K. et al. UBR7 acts as a histone chaperone for post-nucleosomal histone H3. EMBO J. 40, e108307 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauer, M. H. et al. Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates. Nat. Struct. Mol. Biol. 24, 99–107 (2017).

    PubMed 

    Google Scholar
     

  • Tsukuda, T., Fleming, A. B., Nickoloff, J. A. & Osley, M. A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379–383 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma, P. et al. ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nat. Cell Biol. 23, 160–171 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hewitt, G. et al. Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Mol. Cell 81, 767–783.e11 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gogola, E. et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell 33, 1078–1093.e12 (2018).

    PubMed 

    Google Scholar
     

  • Muthurajan, U. M. et al. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Proc. Natl Acad. Sci. USA 111, 12752–12757 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Challa, K. et al. Damage-induced chromatome dynamics link ubiquitin ligase and proteasome recruitment to histone loss and efficient DNA repair. Mol. Cell 81, 811–829.e6 (2021).

    PubMed 

    Google Scholar
     

  • Campos, E. I. et al. The program for processing newly synthesized histones H3.1 and H4. Nat. Struct. Mol. Biol. 17, 1343–1351 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H., Walsh, S. T. & Parthun, M. R. Expanded binding specificity of the human histone chaperone NASP. Nucleic Acids Res. 36, 5763–5772 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plessier, A. et al. Proteomic profiling of UV damage repair patches uncovers histone chaperones with central functions in chromatin repair. Preprint at bioRxiv https://doi.org/10.1101/2024.08.23.609352 (2024).

  • Lee, S. B. et al. Tousled-like kinases stabilize replication forks and show synthetic lethality with checkpoint and PARP inhibitors. Sci. Adv. 4, eaat4985 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali-Fehmi, R. et al. Analysis of the expression of human tumor antigens in ovarian cancer tissues. Cancer Biomark. 6, 33–48 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poli, J., Gasser, S. M. & Papamichos-Chronakis, M. The INO80 remodeller in transcription, replication and repair. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2016.0290 (2017).

  • Nishi, R. et al. Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nat. Cell Biol. 16, 1016–1026 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, M. et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559, 285–289 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reveron-Gomez, N. et al. Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol. Cell 72, 239–249.e5 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escobar, T. M. et al. Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179, 953–963.e11 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, N. et al. Parental histone transfer caught at the replication fork. Nature 627, 890–897 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Carette, J. E. et al. Generation of iPSCs from cultured human malignant cells. Blood 115, 4039–4042 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barazas, M. et al. Radiosensitivity is an acquired vulnerability of PARPi-resistant BRCA1-deficient tumors. Cancer Res. 79, 452–460 (2019).

    PubMed 

    Google Scholar
     

  • Drean, A. et al. Modeling therapy resistance in BRCA1/2-mutant cancers. Mol. Cancer Ther. 16, 2022–2034 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    PubMed 

    Google Scholar
     

  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    PubMed 

    Google Scholar
     

  • Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    PubMed 

    Google Scholar
     

  • MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brockmann, M. et al. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling. Nature 546, 307–311 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Bhin, J. et al. Multi-omics analysis reveals distinct non-reversion mechanisms of PARPi resistance in BRCA1- versus BRCA2-deficient mammary tumors. Cell Rep. 42, 112538 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dreyer, J. et al. Acute multi-level response to defective de novo chromatin assembly in S-phase. Mol. Cell 84, 4711–4728.e10 (2024).

    PubMed 

    Google Scholar
     

  • Haarhuis, J. H. I. et al. A Mediator–cohesin axis controls heterochromatin domain formation. Nat. Commun. 13, 754 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luna-Vargas, M. P. et al. Enabling high-throughput ligation-independent cloning and protein expression for the family of ubiquitin specific proteases. J. Struct. Biol. 175, 113–119 (2011).

    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments