Helms, M., Vattam, S. S. & Goel, A. K. Biologically inspired design: process and products. Des. Stud. 30, 606–622 (2009).
Fu, K., Moreno, D., Yang, M. & Wood, K. L. Bio-inspired design: an overview investigating open questions from the broader field of design-by-analogy. J. Mech. Des. 136, 111102 (2014).
Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).
Laschi, C. Octobot – a robot octopus points the way to soft robotics. IEEE Spectrum 54, 38–43 (2017).
Wu, Q. et al. A novel underwater bipedal walking soft robot bio-inspired by the coconut octopus. Bioinspir. Biomim. 16, 046007 (2021).
Haddock, S. H. D. et al. Insights into the biodiversity, behavior, and bioluminescence of deep-sea organisms using molecular and maritime technology. Oceanography 30, 38–47 (2017).
Bagge, L. E., Osborn, K. J. & Johnsen, S. Nanostructures and monolayers of spheres reduce surface reflections in hyperiid amphipods. Curr. Biol. 26, 3071–3076 (2016).
Fish, F. E., Weber, P. W., Murray, M. M. & Howle, L. E. The tubercles on humpback whales’ flippers: application of bio-inspired technology. Integr. Comp. Biol. 51, 203–213 (2011).
Ko, H., Lauder, G. & Nagpal, R. The role of hydrodynamics in collective motions of fish schools and bioinspired underwater robots. J. R. Soc. Interface 20, 20230357 (2023).
Kennedy, E. B. L., Buresch, K. C., Boinapally, P. & Hanlon, R. T. Octopus arms exhibit exceptional flexibility. Sci. Rep. 10, 20872 (2020).
Van Giesen, L., Kilian, P. B., Allard, C. A. H. & Bellono, N. W. Molecular basis of chemotactile sensation in octopus. Cell 183, 594–604 (2020).
Grasso, F. W. Octopus sucker-arm coordination in grasping and manipulation. Am. Malacol. Bull. 24, 13–23 (2008).
Norman, M. D., Finn, J. & Tregenza, T. Dynamic mimicry in an Indo–Malayan octopus. Proc. R. Soc. Lond. B. 268, 1755–1758 (2001).
Huffard, C. L., Boneka, F. & Full, R. J. Underwater bipedal locomotion by octopuses in disguise. Science 307, 1927 (2005).
Hochner, B. An embodied view of octopus neurobiology. Curr. Biol. 22, R887–R892 (2012).
Zullo, L., Eichenstein, H., Maiole, F. & Hochner, B. Motor control pathways in the nervous system of Octopus vulgaris arm. J. Comp. Physiol. 205, 271–279 (2019).
Kuuspalu, A., Cody, S. & Hale, M. E. Multiple nerve cords connect the arms of octopuses, providing alternative paths for inter-arm signaling. Curr. Biol. 32, 5415–5421 (2022).
Gutnick, T., Zullo, L., Hochner, B. & Kuba, M. J. Use of peripheral sensory information for central nervous control of arm movement by Octopus vulgaris. Curr. Biol. 30, 4322–4327 (2020).
Tekinalp, A. et al. Topology, dynamics, and control of a muscle-architected soft arm. Proc. Natl Acad. Sci. USA 121, e2318769121 (2024).
Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T. & Hochner, B. Control of octopus arm extension by a peripheral motor program. Science 293, 1845–1848 (2001).
Sumbre, G., Fiorito, G., Flash, T. & Hochner, B. Octopuses use a human-like strategy to control precise point-to-point arm movements. Curr. Biol. 16, 767–772 (2006).
Levy, G., Flash, T. & Hochner, B. Arm coordination in octopus crawling involves unique motor control strategies. Curr. Biol. 25, 1195–1200 (2015).
Ijspeert, A. J. Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008).
Amodio, P., Josef, N., Shashar, N. & Fiorito, G. Bipedal locomotion in Octopus vulgaris: a complementary observation and some preliminary considerations. Ecol. Evol. 11, 3679–3684 (2021).
Alupay, J., Mather, J. & Iskarous, K. A syntactic analysis of a complex motor action: the octopus arm ‘slap’. Mar. Biol. 170, 99 (2023).
Chung, W.-S., Kurniawan, N. D. & Marshall, N. J. Comparative brain structure and visual processing in octopus from different habitats. Curr. Biol. 32, 97–110 (2022).
Kuba, M. J., Byrne, R. A., Meisel, D. V. & Mather, J. A. Exploration and habituation in intact free moving Octopus vulgaris. Int. J. Comp. Psychol. 19, 426–438 (2006).
Fiorito, G. et al. Guidelines for the care and welfare of cephalopods in research – a consensus based on an initiative by CephRes, FELASA and the Boyd group. Lab. Anim. 49, 1–90 (2015).
Durden, J. M. et al. Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding. Oceanogr. Mar. Biol. Ann. Rev. 54, 1–72 (2016).
Irschick, D. J. et al. 3D visualization processes for recreating and studying organismal form. iScience 25, 104867 (2022).
Katija, K. & Dabiri, J. O. In situ field measurements of aquatic animal-fluid interactions using a self-contained underwater velocimetry apparatus (scuva). Limnol. Oceanogr. Methods 6, 162–171 (2008).
Katija, K. et al. Revealing enigmatic mucus structures in the deep sea using DeepPIV. Nature 583, 78–82 (2020).
Murphy, D., Webster, D. & Yen, J. A high-speed tomographic PIV system for measuring zooplanktonic flow. Limnol. Oceanogr. Methods 10, 1096–1112 (2012).
Nayak, A. R., Malkiel, E., McFarland, M. N., Twardowski, M. S. & Sullivan, J. M. A review of holography in the aquatic sciences: in situ characterization of particles, plankton, and small scale biophysical interactions. Front. Mar. Sci. 7, 572147 (2021).
Barry, J. P. et al. Abyssal hydrothermal springs-cryptic incubators for brooding octopus. Sci. Adv. 9, eadg3247 (2023).
Voight, J. R. Observations of deep-sea octopodid behavior from undersea vehicles. Am. Malacol. Bull. 24, 43–50 (2008).
Huffard, C. L. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J. Exp. Biol. 209, 3697–3707 (2006).
O’Brien, S. L. & O’Brien, C. E. First record of bipedal locomotion in Callistoctopus furvus. J. Molluscan Stud. 88, Eyac020 (2022).
Zullo, L., Di Clemente, A. & Maiole, F. How octopus arm muscle contractile properties and anatomical organization contribute to arm functional specialization. J. Exp. Biol. 225, jeb243163 (2022).
Nishii, J. & Ikeda, M. Gait analysis of crawling locomotion of Octopus sinensis. In 9th International Symposium on Adaptive Motion of Animals and Machines (AMAM 2019) (ed. Ijspeert, A. J.) 1–2 (EPFL, 2019).
Hanassy, S., Botvinnik, A., Flash, T. & Hochner, B. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation. Bioinspir. Biomim. 10, 035001 (2015).
Lankow, A. J. & Mehta, R. S. Prey-dependent feeding behavior in a kelp-forest mesopredator, the California two-spot octopus. J. Exp. Mar. Biol. Ecol. 567, 151932 (2023).
Calisti, M., Picardi, G. & Laschi, C. Fundamentals of soft robot locomotion. J. R. Soc. Interface 14, 20170101 (2017).
Robison, B., Seibel, B. & Drazen, J. Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal. PLoS ONE 9, e103437 (2014).
Voight, J. R., Kurth, J. A., Strauss, R. E., Strugnell, J. M. & Allcock, L. A. A depth cline in deep-sea octopods (Cephalopoda: Graneledone) in the northeast Pacific Ocean. Bull. Mar. Sci. 96, 323–340 (2020).
Voight, J. R. Sexual dimorphism and niche divergence in a mid-water octopod (Cephalopoda: Bolitaenidae). Biol. Bull. 189, 113–119 (1995).
Burns, J. A. et al. An in situ digital synthesis strategy for the discovery and description of ocean life. Sci. Adv. 10, eadj4960 (2024).
Chen, B. & Pan, B. Full-field surface 3D shape and displacement measurements using an unfocused plenoptic camera. Exp. Mech. 58, 831–845 (2018).
Fahringer, T. W., Lynch, K. P. & Thurow, B. S. Volumetric particle image velocimetry with a single plenoptic camera. Meas. Sci. Technol. 26, 115201 (2015).
Manning, L. et al. NSF Convergence Accelerator Workshop on Bioinspired Design. Workshop Report (National Science Foundation, 2023).
Nagel, J. K., Schmidt, L. & Born, W. Establishing analogy categories for bio-inspired design. Designs 2, 47 (2018).
Lippmann, M. G. La photographie integrale. C. R. Acad. Sci. 146, 446–451 (1908).
Lippmann, M. G. Integral photography. Sci. Am. 105, 164 (1911).
Levoy, M. Light fields and computational imaging. Computer 39, 46–55 (2006).
Ng, R. et al. Light field photography with a hand-held plenoptic camera. Stanford Technical Report CTSR 2005-02 (Stanford Univ., 2005).
Perwaß, C. & Wietzke, L. Single lens 3D-camera with extended depth-of-field. In Human Vision and Electronic Imaging XVII (eds. Rogowitz, B. E. et al.) 829108 (Society of Photo-Optical Instrumentation Engineers (SPIE), 2012).
Heinze, C., Spyropoulos, S., Hussmann, S. & Perwass, C. Automated robust metric calibration algorithm for multifocus plenoptic cameras. IEEE Trans. Instrum. Meas. 65, 1197–1205 (2016).
Roberts, P. L. D. EyeRIS camera control. GitHub https://github.com/bioinspirlab/eyeris-camera-control (2024).
Roberts, P. L. D. EyeRIS zoom drive. GitHib https://github.com/bioinspirlab/eyeris-zoom-drive (2024).
Robson, G. C. Monograph of the recent Cephalopoda, Part 1: Octopodinae (British Museum, 1929).
Byrne, R. A., Kuba, M. & Griebel, U. Lateral asymmetry of eye use in Octopus vulgaris Anim. Behav. 64, 461–468 (2002).
Hedrick, T. L. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 3, 034001 (2008).
Katija, K., Roberts, P. & Daniels, J. Muusoctopus robustus crawling data from Davidson Seamount, 2022-08-26. Zenodo https://doi.org/10.5281/zenodo.10795493 (2024).
Daniels, J. Octopus 3D tracking. GitHub https://github.com/bioinspirlab/octopus-3d-tracking (2024).