Thursday, August 7, 2025
No menu items!
HomeNatureStronger El Niños reduce tropical forest arthropod diversity and function

Stronger El Niños reduce tropical forest arthropod diversity and function

  • Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    PubMed 

    Google Scholar
     

  • Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).


    Google Scholar
     

  • Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    PubMed 

    Google Scholar
     

  • Stork, N. E., Boyle, M. J. W., Wardhaugh, C. & Beaver, R. A. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Divers. 17, 1156–1166 (2024).


    Google Scholar
     

  • Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116, 22512–22517 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    ADS 

    Google Scholar
     

  • Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).

    ADS 

    Google Scholar
     

  • Boyle, M. J. W. et al. Causes and consequences of insect decline in tropical forests. Nat. Rev. Biodivers. 1, 315–331 (2025).


    Google Scholar
     

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience 70, 80–89 (2020).


    Google Scholar
     

  • Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54 (2016).

    PubMed 

    Google Scholar
     

  • Huang, B. et al. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    ADS 

    Google Scholar
     

  • Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

    ADS 

    Google Scholar
     

  • Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J., Santoso, A. & Cai, W.) 65–86 (American Geophysical Union, 2020).

  • Vencl, F. V. & Srygley, R. B. El Niño oscillations impact anti-predator defences to alter survival of an herbivorous beetle in a neotropical wet forest. J. Trop. Ecol. 39, e34 (2023).


    Google Scholar
     

  • França, F. M. et al. El Niño impacts on human-modified tropical forests: consequences for dung beetle diversity and associated ecological processes. Biotropica 52, 252–262 (2020).


    Google Scholar
     

  • Roubik, D. W. Ups and downs in pollinator populations: When is there a decline?. Conserv. Ecol. 5, 2 (2001).


    Google Scholar
     

  • Richardson, B. A. The bromeliad microcosm and the assessment of faunal diversity in a neotropical forest. Biotropica 31, 321–336 (1999).


    Google Scholar
     

  • Schowalter, T. D. & Ganio, L. M. Invertebrate communities in a tropical rain forest canopy in Puerto Rico following Hurricane Hugo. Ecol. Entomol. 24, 191–201 (2001).


    Google Scholar
     

  • Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).


    Google Scholar
     

  • Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luk, C.-L., Basset, Y., Kongnoo, P., Hau, B. C. H. & Bonebrake, T. C. Inter-annual monitoring improves diversity estimation of tropical butterfly assemblages. Biotropica 51, 519–528 (2019).


    Google Scholar
     

  • Roubik, D. W. et al. Long-term (1979–2019) dynamics of protected orchid bees in Panama. Conserv. Sci. Pract. 3, e543 (2021).


    Google Scholar
     

  • Bonebrake, T. C. et al. Warming threat compounds habitat degradation impacts on a tropical butterfly community in Vietnam. Glob. Ecol. Conserv. 8, 203–211 (2016).


    Google Scholar
     

  • Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).

    PubMed 

    Google Scholar
     

  • Sánchez González, I. et al. Niche specialization and community niche space increase with species richness in filter-feeder assemblages. Ecosphere 14, e4495 (2023).


    Google Scholar
     

  • Fox, B. J. Niche parameters and species richness. Ecology 62, 1415–1425 (1981).


    Google Scholar
     

  • Cleary, D. F. R. An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo. Oecologia 135, 313–321 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • Detto, M., Wright, S. J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nat. Commun. 9, 913 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petráková, L. et al. Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Sci. Rep. 5, 14013 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Z.-W., Cai, C.-Y., Huang, D.-Y. & Li, L.-Z. Specialized adaptations for springtail predation in Mesozoic beetles. Sci. Rep. 7, 98 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 18, 21 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsang, T. P. N., Ponisio, L. C. & Bonebrake, T. C. Increasing synchrony opposes stabilizing effects of species richness on terrestrial communities. Divers. Distrib. 29, 849–861 (2023).


    Google Scholar
     

  • Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84 (2014).

    PubMed 

    Google Scholar
     

  • Staab, M. et al. Insect decline in forests depends on species’ traits and may be mitigated by management. Commun. Biol. 6, 338 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prather, C. M. & Belovsky, G. E. Herbivore and detritivore effects on rainforest plant production are altered by disturbance. Ecol. Evol. 9, 7652–7659 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Systemat. 27, 305–335 (1996).


    Google Scholar
     

  • Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).

    ADS 

    Google Scholar
     

  • Gómez-Zurita, J., Hunt, T., Kopliku, F. & Vogler, A. P. Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores. PLoS ONE 2, e360 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancaster, L. T. Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth. Nat. Ecol. Evol. 4, 963–969 (2020).

    PubMed 

    Google Scholar
     

  • Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).

    PubMed 

    Google Scholar
     

  • Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Eppley, T. M. et al. Tropical field stations yield high conservation return on investment. Conserv. Lett. 60, e13007 (2024).


    Google Scholar
     

  • Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).


    Google Scholar
     

  • Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).


    Google Scholar
     

  • van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2023).

  • Oksanen, J. et al. Vegan: community ecology package (2022).

  • Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

  • Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    MathSciNet 

    Google Scholar
     

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  • Bailey, P. & Emad, A. wCorr: Weighted correlations cran.r-project.org/web/packages/wCorr/index.html (2023).

  • Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Wilke, C. & Wiernik, B. ggtext: Improved text rendering support for ‘ggplot2’ cran.r-project.org/web/packages/ggtext/index.html (2022).

  • Wilke, C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’ cran.r-project.org/web/packages/cowplot/index.html (2024).

  • Simpson, G. gratia: Graceful ggplot-based graphics and other functions for GAMs fitted using mgcv cran.r-project.org/web/packages/gratia/index.html (2024).

  • Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).

    MathSciNet 

    Google Scholar
     

  • Box G. E. P., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis: Forecasting and Control (Holden-Day, 1994).

  • Jones, R. H. Longitudinal Data with Serial Correlation: A State-Space Approach (Chapman and Hall, 1993).

  • Dunn, P. K. & Smyth, G. K. Series evaluation of Tweedie exponential dispersion model densities. Stat. Comput. 15, 267–280 (2005).

    MathSciNet 

    Google Scholar
     

  • Wootton, K. L. & Stouffer, D. B. Species’ traits and food-web complexity interactively affect a food web’s response to press disturbance. Ecosphere 7, e01518 (2016).


    Google Scholar
     

  • Mally, R. et al. Historical invasion rates vary among insect trophic groups. Curr. Biol. 34, 5374–5381.e3 (2024).

    PubMed 

    Google Scholar
     

  • GBIF.Org user. Occurrence download 29229815. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.6C2QQG (2025).

  • GBIF.Org user. Occurrence download 2557474. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.R6MNY5 (2025).

  • GBIF.Org user. Occurrence download 241682722. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.5KF5NR (2025).

  • GBIF.Org user. Occurrence download 305626069. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.JPEWKC (2025).

  • GBIF.Org user. Occurrence download 66151475. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.4S7VFE (2025).

  • GBIF.Org user. Occurrence download 207807231. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.4E6SKK (2025).

  • GBIF.Org user. Occurrence download 379594148. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.2TP7Y3 (2025).

  • Sharp, A. C. et al. Compiled datasets for “Stronger El Niños reduce tropical forest arthropod diversity and function” [Data set]. Zenodo https://doi.org/10.5281/zenodo.14863367 (2025).

  • Sharp, A. C. dradamsharp/Stronger-El-Ninos-reduce-tropical-forest-arthropod-diversity-and-function: analysis for ‘Stronger El Niños reduce tropical forest arthropod diversity and function’ (Release). Zenodo https://doi.org/10.5281/zenodo.15428849 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments