Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 409 (2022).
Jobbagy, E. G., Nosetto, M. D., Villagra, P. E. & Jackson, R. B. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol. Appl. 21, 678–694 (2011).
Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).
Laughlin, D. C. et al. Rooting depth and xylem vulnerability are independent woody plant traits jointly selected by aridity, seasonality, and water table depth. New Phytol. 240, 1774–1787 (2023).
Klimešová, J., Martínková, J., Bartušková, A. & Ott, J. P. Belowground plant traits and their ecosystem functions along aridity gradients in grasslands. Plant Soil 487, 39–48 (2023).
Ren, Z. et al. Belowground soil and vegetation components change across the aridity threshold in grasslands. Environ. Res. Lett. 18, 094014 (2023).
Fan, Y. et al. Hillslope hydrology in global change research and earth system modeling. Water Resour. Res. 55, 1737–1772 (2019).
Mattos, C. R. C. et al. Double stress of waterlogging and drought drives forest–savanna coexistence. Proc. Natl Acad. Sci. 120, e2301255120 (2023).
Das, A., Nagendra, H., Anand, M. & Bunyan, M. Topographic and bioclimatic determinants of the occurrence of forest and grassland in tropical montane forest-grassland mosaics of the Western Ghats, India. PLoS ONE 10, e0130566 (2015).
Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground Water and Surface Water: A Single Resource (U.S. Geological Survey, 1998).
Fan, Y. Are catchments leaky? Wiley Interdiscip. Rev. Water 6, e1386 (2019).
Schaller, M. F. & Fan, Y. River basins as groundwater exporters and importers: implications for water cycle and climate modeling. J. Geophys. Res. Atmos. 114, D04103 (2009).
Tóth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 68, 4795–4812 (1963).
Bethke, C. M. & Johnson, T. M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 36, 121–152 (2008).
Fan, Y. Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).
Cuthbert, M. O. & Ashley, G. M. A spring forward for hominin evolution in East Africa. PLoS ONE 9, e107358 (2014).
Fan, Y. & Miguez-Macho, G. A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim. Dyn. 37, 253–278 (2011).
Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).
Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).
Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).
Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res. Atmos. 117, D15113 (2012).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Pastorello, G. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res. Atmos. 117, D15114 (2012).
Lähteenoja, O. & Page, S. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J. Geophys. Res. Biogeosci. 116, G02025 (2011).
McCarthy, T. S. Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J. Hydrol. 320, 264–282 (2006).
Jiménez-Alfaro, B. et al. Habitat-based biodiversity responses to macroclimate and edaphic factors in European fen ecosystems. Glob. Change Biol. 29, 6756–6771 (2023).
Navarro, G., Luebert, F. & Molina, J. A. South American terrestrial biomes as geocomplexes: a geobotanical landscape approach. Veg. Classif. Surv. 4, 75–114 (2023).
Metzen, D. et al. Spatio-temporal transpiration patterns reflect vegetation structure in complex upland terrain. Sci. Total Environ. 694, 133551 (2019).
Ramberg, L. et al. Species diversity of the Okavango Delta, Botswana. Aquat. Sci. 68, 310–337 (2006).
Freeze, R. A. & Cherry, J. A. Groundwater (Prentice Hall, 1979).
Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).
Hodnett, M. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).
Clapp, R. B. & Hornberger, G. M. Empirical equations for some soil hydraulic-properties. Water Resour. Res. 14, 601–604 (1978).
Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).
Shuttleworth, W. J. & Wallace, J. S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 111, 839–855 (1985).
Zhou, M. C. et al. Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. J. Hydrol. 327, 151–173 (2006).
Yuan, H., Dai, Y., Xiao, Z., Ji, D. & Shangguan, W. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ. 115, 1171–1187 (2011).
Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 115, Q12004 (2011).
Gleeson, T., Moosdorf, N., Hartmann, J. & van Beek, L. P. H. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).
Jiang, X.-W., Wang, X.-S. & Wan, L. Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. Hydrol. J. 18, 839–850 (2010).
Louis, C. in Rock Mechanics (ed. Müller, L.) 299–387 (Springer, 1972).
Athy, L. F. Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 14, 1–24 (1930).
Bedinger, M. S., Langer, W. H. & Reed, J. E. Synthesis of hydraulic properties of rocks with reference to the Basin and Range province, southwestern United States. in United States Geological Survey Water-Supply Paper 2310 (ed. Subitzky, S.) 35–43 (USGS, 1986).
Neuzil, C. E. Hydromechanical coupling in geologic processes. Hydrol. J. 11, 41–83 (2003).
Rutqvist, J. & Stephansson, O. The role of hydromechanical coupling in fractured rock engineering. Hydrol. J. 11, 7–40 (2003).
Anderman, E. R. & Hill, M. C. MODFLOW-2000, the U.S. Geological Survey Modular Ground-water Model — Three Additions to the Hydrogeologic-Unit Flow (HUF) Package: Alternative Storage for the Uppermost Active Cells, Flows in Hydrogeologic Units, and the Hydraulic-conductivity Depth-dependence (KDEP) Capability (U.S. Geological Survey, 2003).
Vourlitis, G. L. et al. Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resour. Res. 38, 30-31–30-11 (2002).
Global Runoff Data Centre (GRDC). GRDC Major River Basins 2nd rev. ed. (Federal Institute of Hydrology (BfG), 2020).
Antico, A., Aguiar, R. O. & Amsler, M. L. Hydrometric data rescue in the Paraná River Basin. Water Resour. Res. 54, 1368–1381 (2018).
Miguez-Macho, G. & Fan, Y. GHI and GHI_topo. Zenodo https://doi.org/10.5281/zenodo.15231648 (2025).