Friday, August 1, 2025
No menu items!
HomeNatureInvariance of dynamo action in an early-Earth model

Invariance of dynamo action in an early-Earth model

  • Tarduno, J. A. et al. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 1238–1240 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Biggin, A. J. et al. Palaeomagnetism of Archaean rocks of the Onverwacht Group, Barberton Greenstone Belt (southern Africa): evidence for a stable and potentially reversing geomagnetic field at ca. 3.5Ga. Earth Planet. Sci. Lett. 302, 314–328 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Nimmo, F. in Treatise on Geophysics Vol. 8 (ed. Schubert, G.) 27–55 (Elsevier, 2015).

  • Glatzmaier, G. A. & Roberts, P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Kuang, W. & Bloxham, J. An Earth-like numerical dynamo model. Nature 389, 371–374 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Christensen, U. R., Aubert, J. & Hulot, G. Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett. 296, 487–496 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Aubert, J., Finlay, C. C. & Fournier, A. Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature 502, 219–223 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Yadav, R. K., Gastine, T., Christensen, U. R., Wolk, S. J. & Poppenhaeger, K. Approaching a realistic force balance in geodynamo simulations. Proc. Natl Acad. Sci. 113, 12065–12070 (2016).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Int. 211, 1–29 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Sheyko, A., Finlay, C., Favre, J. & Jackson, A. Scale separated low viscosity dynamos and dissipation within the Earth’s core. Sci. Rep. 8, 12566 (2018).

    ADS 

    Google Scholar
     

  • Aubert, J. State and evolution of the geodynamo from numerical models reaching the physical conditions of Earth’s core. Geophys. J. Int. 235, 468–487 (2023).

    ADS 

    Google Scholar
     

  • Labrosse, S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter. 247, 36–55 (2015).

    ADS 

    Google Scholar
     

  • Davies, C. J. Cooling history of Earth’s core with high thermal conductivity. Phys. Earth Planet. Inter. 247, 65–79 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Biggin, A. J. et al. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 526, 245–248 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Bono, R. K., Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nat. Geosci. 12, 143–147 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Bloxham, J. Sensitivity of the geomagnetic axial dipole to thermal core–mantle interactions. Nature 405, 63–65 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Landeau, M., Aubert, J. & Olson, P. The signature of inner-core nucleation on the geodynamo. Earth Planet. Sci. Lett. 465, 193–204 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Mound, J. E. & Davies, C. J. Longitudinal structure of Earth’s magnetic field controlled by lower mantle heat flow. Nat. Geosci. 16, 380–385 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Sakuraba, A. & Kono, M. Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 111, 105–121 (1999).

    ADS 

    Google Scholar
     

  • Zhan, X., Zhang, K. & Zhu, R. A full-sphere convection-driven dynamo: implications for the ancient geomagnetic field. Phys. Earth Planet. Inter. 187, 328–335 (2011).

    ADS 

    Google Scholar
     

  • Wicht, J. & Sanchez, S. Advances in geodynamo modelling. Geophys. Astrophys. Fluid Dyn. 113, 2–50 (2019).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Roberts, P. H. & King, E. M. On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 76, 096801 (2013).

    ADS 

    Google Scholar
     

  • Kageyama, A. & Sato, T. Computer simulation of a magnetohydrodynamic dynamo. II. Phys. Plasmas 2, 1421–1431 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Christensen, U., Olson, P. & Glatzmaier, G. A. A dynamo model interpretation of geomagnetic field structures. Geophys. Res. Lett. 25, 1565–1568 (1998).

    ADS 

    Google Scholar
     

  • Kida, S., Araki, K. & Kitauchi, H. Periodic reversals of magnetic field generated by thermal convection in a rotating spherical shell. J. Phys. Soc. Jpn. 66, 2194–2201 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • King, E. M. & Buffett, B. A. Flow speeds and length scales in geodynamo models: the role of viscosity. Earth Planet. Sci. Lett. 371-372, 156–162 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Sakuraba, A. & Roberts, P. H. Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nat. Geosci. 2, 802–805 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Sheyko, A., Finlay, C. C. & Jackson, A. Magnetic reversals from planetary dynamo waves. Nature 539, 551–554 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Aubert, J., Gastine, T. & Fournier, A. Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech. 813, 558–593 (2017).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Aubert, J. & Finlay, C. C. Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth’s core surface. Nat. Geosci. 12, 393–398 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Aubert, J., Livermore, P. W., Finlay, C. C., Fournier, A. & Gillet, N. A taxonomy of simulated geomagnetic jerks. Geophys. J. Int. 231, 650–672 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Aubert, J. Approaching Earth’s core conditions in high-resolution geodynamo simulations. Geophys. J. Int. 219, S137–S151 (2019).

    ADS 

    Google Scholar
     

  • Schwaiger, T., Gastine, T. & Aubert, J. Relating force balances and flow length scales in geodynamo simulations. Geophys. J. Int. 224, 1890–1904 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Dormy, E. Strong-field spherical dynamos. J. Fluid Mech. 789, 500–513 (2016).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Kent, D. V. & Smethurst, M. A. Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. Earth Planet. Sci. Lett. 160, 391–402 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Veikkolainen, T., Evans, D. A., Korhonen, K. & Pesonen, L. J. On the low-inclination bias of the Precambrian geomagnetic field. Precambrian Res. 244, 23–32 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Biggin, A. J. et al. Quantitative estimates of average geomagnetic axial dipole dominance in deep geological time. Nat. Commun. 11, 6100 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Jackson, A., Jonkers, A. R. T. & Walker, M. R. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 358, 957–990 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Finlay, C. C. et al. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets Space 72, 156 (2020).

    ADS 

    Google Scholar
     

  • Roberts, P. H. in Treatise on Geophysics Vol. 8 (ed. Schubert, G.) 57–90 (Elsevier, 2015).

  • Marti, P. & Jackson, A. A fully spectral methodology for magnetohydrodynamic calculations in a whole sphere. J. Comput. Phys. 305, 403–422 (2016).

    ADS 
    MathSciNet 

    Google Scholar
     

  • de Koker, N., Steinle-Neumann, G. & Vlček, V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proc. Natl Acad. Sci. 109, 4070–4073 (2012).

    ADS 

    Google Scholar
     

  • Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Greenspan, H. P. The Theory of Rotating Fluids (Cambridge Univ. Press, 1968).

  • Schwaiger, T., Gastine, T. & Aubert, J. Force balance in numerical geodynamo simulations: a systematic study. Geophys. J. Int. 219, S101–S114 (2019).

    ADS 

    Google Scholar
     

  • Calkins, M. A., Orvedahl, R. J. & Featherstone, N. A. Large-scale balances and asymptotic scaling behaviour in spherical dynamos. Geophys. J. Int. 227, 1228–1245 (2021).

    ADS 

    Google Scholar
     

  • Taylor, J. B. The magneto-hydrodynamics of a rotating fluid and the earth’s dynamo problem. Proc. R. Soc. Lond. A Math. Phys. Sci. 274, 274–283 (1963).

    ADS 

    Google Scholar
     

  • Bono, R. K. et al. The PINT database: a definitive compilation of absolute palaeomagnetic intensity determinations since 4 billion years ago. Geophys. J. Int. 229, 522–545 (2022).

    ADS 

    Google Scholar
     

  • Constable, C., Korte, M. & Panovska, S. Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Earth Planet. Sci. Lett. 453, 78–86 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Jackson, A. Intense equatorial flux spots on the surface of the Earth’s core. Nature 424, 760–763 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Marti, P. et al. Full sphere hydrodynamic and dynamo benchmarks. Geophys. J. Int. 197, 119–134 (2014).

    ADS 

    Google Scholar
     

  • Livermore, P. W., Jones, C. A. & Worland, S. J. Spectral radial basis functions for full sphere computations. J. Comput. Phys. 227, 1209–1224 (2007).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Lin, Y. & Jackson, A. Large-scale vortices and zonal flows in spherical rotating convection. J. Fluid Mech. 912, A46 (2021).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wicht, J. & Christensen, U. R. Torsional oscillations in dynamo simulations. Geophys. J. Int. 181, 1367–1380 (2010).

    ADS 

    Google Scholar
     

  • Varga, P., Denis, C. & Varga, T. Tidal friction and its consequences in palaeogeodesy, in the gravity field variations and in tectonics. J. Geodyn. 25, 61–84 (1998).


    Google Scholar
     

  • Backus, G., Parker, R. & Constable, C. Foundations of Geomagnetism (Cambridge Univ. Press, 1996).

  • RELATED ARTICLES

    Most Popular

    Recent Comments