Friday, August 1, 2025
No menu items!
HomeNatureEpithelial cell membrane perforation induces allergic airway inflammation

Epithelial cell membrane perforation induces allergic airway inflammation

  • Kopp, E. B., Agaronyan, K., Licona-Limon, I., Nish, S. A. & Medzhitov, R. Modes of type 2 immune response initiation. Immunity 56, 687–694 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • El-Naccache, D. W., Hasko, G. & Gause, W. C. Early events triggering the initiation of a type 2 immune response. Trends Immunol. 42, 151–164 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hammad, H. & Lambrecht, B. N. Barrier epithelial cells and the control of type 2 immunity. Immunity 43, 29–40 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Lambrecht, B. N. & Hammad, H. Allergens and the airway epithelium response: gateway to allergic sensitization. J. Allergy Clin. Immunol. 134, 499–507 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kotas, M. E., O’Leary, C. E. & Locksley, R. M. Tuft cells: context- and tissue-specific programming for a conserved cell lineage. Annu. Rev. Pathol. 18, 311–335 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pulendran, B. & Artis, D. New paradigms in type 2 immunity. Science 337, 431–435 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDaniel, M. M., Lara, H. I. & von Moltke, J. Initiation of type 2 immunity at barrier surfaces. Mucosal Immunol. 16, 86–97 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd, C. M. & Snelgrove, R. J. Type 2 immunity: expanding our view. Sci. Immunol. 3, eaat1604 (2018).

    PubMed 

    Google Scholar
     

  • Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trompette, A. et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kouzaki, H., O’Grady, S. M., Lawrence, C. B. & Kita, H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J. Immunol. 183, 1427–1434 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Ualiyeva, S. irway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci. Immunol. 5, eaax7224 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Sensing plasma membrane pore formation induces chemokine production in survivors of regulated necrosis. Dev. Cell 57, 228–245.e226 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bischofberger, M., Iacovache, I. & van der Goot, F. G. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12, 266–275 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. & Lieberman, J. Knocking ‘em dead: pore-forming proteins in immune defense. Annu. Rev. Immunol. 38, 455–485 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Verlaan, D. J. et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am. J. Hum. Genet. 85, 377–393 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 57, 1056–1070.e1055 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, M. et al. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and gasdermin C. Immunity 55, 623–638.e625 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bush, R. K. & Prochnau, J. J. Alternaria-induced asthma. J. Allergy Clin. Immunol. 113, 227–234 (2004).

    PubMed 

    Google Scholar
     

  • Hernandez-Ramirez, G., Barber, D., Tome-Amat, J., Garrido-Arandia, M. & Diaz-Perales, A. Alternaria as an inducer of allergic sensitization. J. Fungi 7, 838 (2021).

    CAS 

    Google Scholar
     

  • Kouzaki, H., Iijima, K., Kobayashi, T., O’Grady, S. M. & Kita, H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate TH2-type responses. J. Immunol. 186, 4375–4387 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Boitano, S. et al. Alternaria alternata serine proteases induce lung inflammation and airway epithelial cell activation via PAR2. Am. J. Physiol. 300, L605–L614 (2011).

    CAS 

    Google Scholar
     

  • Snelgrove, R. J. et al. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations. J. Allergy Clin. Immunol. 134, 583–592 e586 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cayrol, C. et al. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat. Immunol. 19, 375–385 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Schmitt, P. et al. TL1A is an epithelial alarmin that cooperates with IL-33 for initiation of allergic airway inflammation. J. Exp. Med. 221, e20231236 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doherty, T. A. et al. STAT6 regulates natural helper cell proliferation during lung inflammation initiated by Alternaria. Am. J. Physiol. 303, L577–L588 (2012).

    CAS 

    Google Scholar
     

  • Cayrol, C. & Girard, J. P. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol. Rev. 281, 154–168 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • White, J. R. et al. Cloning and functional characterization of a novel human CC chemokine that binds to the CCR3 receptor and activates human eosinophils. J. Leukoc. Biol. 62, 667–675 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Imai, T. et al. Selective recruitment of CCR4-bearing TH2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int. Immunol. 11, 81–88 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Sui, P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360, 6393 (2018).


    Google Scholar
     

  • Cardoso, F. et al. Neuro-mesenchymal units control ILC2 and obesity via a brain–adipose circuit. Nature 597, 410–414 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minutti, C. M. et al. Epidermal growth factor receptor expression licenses type-2 helper T cells to function in a T cell receptor-independent fashion. Immunity 47, 710–722.e716 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harb, H. et al. A regulatory T cell Notch4–GDF15 axis licenses tissue inflammation in asthma. Nat. Immunol. 21, 1359–1370 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, X. et al. IL-24 promotes atopic dermatitis-like inflammation through driving MRSA-induced allergic responses. Protein Cell 16, 188–210 (2024).

    PubMed Central 

    Google Scholar
     

  • Krasevec, N. & Skocaj, M. Towards understanding the function of aegerolysins. Toxins 14, 629 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lukoyanova, N. et al. Conformational changes during pore formation by the perforin-related protein pleurotolysin. PLoS Biol. 13, e1002049 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Idzko, M. et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat. Med. 13, 913–919 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yap, W. Y. & Hwang, J. S. Response of cellular innate immunity to cnidarian pore-forming toxins. Molecules 23, 2537 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bokori-Brown, M. et al. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein. Nat. Commun. 7, 11293 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossjohn, J., Feil, S. C., McKinstry, W. J., Tweten, R. K. & Parker, M. W. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89, 685–692 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Mancheno, J. M., Tateno, H., Goldstein, I. J., Martinez-Ripoll, M. & Hermoso, J. A. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J. Biol. Chem. 280, 17251–17259 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, Y. et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature 503, 397–401 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 54, 2595–2610.e2597 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Verma, A. H. et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2, eaam8834 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 180, 107–121.e117 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, C. H. & Chung, K. R. Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genet. Biol. 47, 818–827 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Chung, K. R., Shilts, T., Li, W. & Timmer, L. W. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett. 213, 33–39 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belmonte, G. et al. Primary and secondary structure of a pore-forming toxin from the sea anemone, Actinia equina L., and its association with lipid vesicles. Biochim. Biophys. Acta 1192, 197–204 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Sakurai, N., Kaneko, J., Kamio, Y. & Tomita, T. Cloning, expression, and pore-forming properties of mature and precursor forms of pleurotolysin, a sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus. Biochim. Biophys. Acta 1679, 65–73 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Ohno-Iwashita, Y., Iwamoto, M., Mitsui, K., Kawasaki, H. & Ando, S. Cold-labile hemolysin produced by limited proteolysis of theta-toxin from Clostridium perfringens. Biochemistry 25, 6048–6053 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. 66, 213–221 (2010).

    CAS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments