Ji, Q., Luo, Z.-X., Yuan, C.-X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006).
Yang, Z. et al. Pterosaur integumentary structures with complex feather-like branching. Nat. Ecol. Evol. 3, 24–30 (2019).
Lowe, C. B., Clarke, J. A., Baker, A. J., Haussler, D. & Edwards, S. V. Feather development genes and associated regulatory innovation predate the origin of Dinosauria. Mol. Biol. Evol. 32, 23–28 (2015).
Buchwitz, M. & Voigt, S. The dorsal appendages of the Triassic reptile Longisquama insignis: reconsideration of a controversial integument type. Palaontol. Z. 86, 313–331 (2012).
Jones, T. D. et al. Nonavian feathers in a Late Triassic archosaur. Science 288, 2202–2205 (2000).
Reisz, R. R. & Sues, H.-D. The ‘feathers’ of Longisquama. Nature 408, 428–428 (2000).
Sharov, A. G. [Unusual reptile from the Lower Triassic of Fergana]. Paleontol. Zh. 1, 127–131 (1970).
Renesto, S., Spielmann, J. A., Lucas, S. G. & Spagnoli, G. T. The taxonomy and paleobiology of the Late Triassic (Carnian-Norian: Adamanian-Apachean) drepanosaurs (Diapsida: Archosauromorpha: Drepanosauromorpha). Bull. New Mexico Mus. Nat. Hist. Sci. 46, 1–81 2010).
Dhouailly, D. et al. Getting to the root of scales, feather and hair: as deep as odontodes? Exp. Dermatol. 28, 503–508 (2019).
Di-Poï, N. & Milinkovitch, M. C. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. Sci. Adv. 2, e1600708 (2016).
Musser, J. M., Wagner, G. P. & Prum, R. O. Nuclear β‐catenin localization supports homology of feathers, avian scutate scales, and alligator scales in early development. Evol. Dev. 17, 185–194 (2015).
Widelitz, R. B., Veltmaat, J. M., Mayer, J. A., Foley, J. & Chuong, C.-M. Mammary glands and feathers: comparing two skin appendages which help define novel classes during vertebrate evolution. Semin. Cell Dev. Biol. 18, 255–266 (2007).
Millar, S. E. Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118, 216–225 (2002).
Dalla Valle, L. et al. β‐keratins of the crocodilian epidermis: composition, structure, and phylogenetic relationships. J. Exp. Zool. B Mol. Dev. Evol. 312, 42–57 (2009).
Gall, J.-C. Faunes et paysages du Grès à Voltzia du Nord des Vosges. Essai paléoécologique sur le Buntsandstein supérieur. Mémoires du Service de la Carte géologique d’Alsace et de Lorraine 34, 1–318 (1971).
Pritchard, A. C. & Nesbitt, S. J. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida. R. Soc. Open Sci. 4, 170499 (2017).
Renesto, S. & Dalla Vecchia, F. M. The skull and lower jaw of the holotype of Megalancosaurus preonensis (Diapsida, Drepanosauridae) from the Upper Triassic of Northern Italy. Riv. Ital. Paleontol. Stratigr. 111, 247–257 (2005).
Buffa, V., Frey, E., Steyer, J.-S. & Laurin, M. ‘Birds’ of two feathers: Avicranium renestoi and the paraphyly of bird-headed reptiles (Diapsida: ‘Avicephala’). Zool. J. Linn. Soc. 202, zlae050 (2024).
Renesto, S. & Binelli, G. Vallesaurus cenensis Wild, 1991, a drepanosaurid (Reptilia, Diapsida) from the Late Triassic of northern Italy. Riv. Ital. Paleontol. Stratigr. 112, 77–94 (2006).
Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778 (2016).
Spiekman, S. N. F., Fraser, N. C. & Scheyer, T. M. A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other “protorosaurs”, and its implications for the early evolution of stem archosaurs. PeerJ 9, e11143 (2021).
Evans, S. E. in Biology of the Reptilia Vol. 20 (eds Gans, C. et al.) Ch. 1 (Society for the Study of Amphibians and Reptiles, 2008).
Moon, B. C. & Kirton, A. M. Ichthyosaurs of the British Middle and Upper Jurassic Part 1. Ophthalmosaurus. Monogr. Palaeontogr. Soc. 170, 1–84 (2016).
Rieppel, O. Sauropterygia I: Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea. Handbuch der Paläoherpetologie Vol. 12A (Verlag Dr. Friedrich Pfeil, 2000).
Colbert, E. H. & Olsen, P. E. A new and unusual aquatic reptile from the Lockatong Formation of New Jersey (Late Triassic, Newark Supergroup). Am. Mus. Novit. 2001, 1–24 (2001).
Pritchard, A. C., Turner, A. H., Irmis, R. B., Nesbitt, S. J. & Smith, N. D. Extreme modification of the tetrapod forelimb in a Triassic diapsid reptile. Curr. Biol. 26, 1–8 (2016).
Hopson, J. A. in New Perspectives on the Origin and Early Evolution of Birds: Proc. of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J. & Gall, I. F.) Ch. 12 (Peabody Museum of Natural History, 2001).
Spiekman, S.N.F. et al. Supplementary Files to ‘Triassic diapsid shows early diversification of skin appendages in reptiles’. Figshare https://doi.org/10.6084/m9.figshare.27083092 (2025).
Chang, C. et al. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. Int. J. Dev. Biol. 53, 813 (2009).
Wang, B., Yang, W., Sherman, V. R. & Meyers, M. A. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 41, 60–74 (2016).
Edwards, N. P. et al. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy. Sci. Rep. 6, 34002 (2016).
Li, Q. et al. Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature 507, 350–353 (2014).
Rossi, V., McNamara, M. E., Webb, S. M., Ito, S. & Wakamatsu, K. Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates. Proc. Natl Acad. Sci. USA 116, 17880–17889 (2019).
Wogelius, R. A. et al. Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333, 1622–1626 (2011).
Rossi, V., Webb, S. M. & McNamara, M. E. Hierarchical biota-level and taxonomic controls on the chemistry of fossil melanosomes revealed using synchrotron X-ray fluorescence. Sci. Rep. 10, 8970 (2020).
Roy, A. et al. in Pennaraptoran Theropod Dinosaurs Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) Ch. 9 (American Museum of Natural History, 2020).
Pritchard, A. C., Sues, H.-D., Scott, D. & Reisz, R. R. Osteology, relationships and functional morphology of Weigeltisaurus jaekeli (Diapsida, Weigeltisauridae) based on a complete skeleton from the Upper Permian Kupferschiefer of Germany. PeerJ 9, e11413 (2021).
Simões, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706–709 (2018).
Ezcurra, M. D., Scheyer, T. M. & Butler, R. J. The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLoS ONE 9, e89165 (2014).
Caro, T. Antipredator deception in terrestrial vertebrates. Curr. Zool. 60, 16–25 (2014).
Grauvogel-Stamm, L. La flore du Grés à Voltzia (Buntsandstein supérieur) des Vosges du Nord (France): morphologie, anatomie, interprétations phylogénique et paléogéographique. Sci. Géologiques, Bull. et. Mémoires 50, 1–225 (1978).
Lucas, A. M. & Stettenheim, P. R. Avian Anatomy. Integument, Part I and II (US Government Printing Office, 1972).
Prum, R. O. Development and evolutionary origin of feathers. J. Exp. Zool. B Mol. Dev. Evol. 285, 291–306 (1999).
Benton, M. J. The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Res. 100, 261–289 (2021).
Benton, M. J., Dhouailly, D., Jiang, B. & McNamara, M. The early origin of feathers. Trends Ecol. Evol. 34, 856–869 (2019).
Olsen, P. et al. Arctic ice and the ecological rise of the dinosaurs. Sci. Adv. 8, eabo6342 (2022).
Babarović, F. et al. Characterization of melanosomes involved in the production of non-iridescent structural feather colours and their detection in the fossil record. J. R. Soc. Interface 16, 20180921 (2019).
Cincotta, A. et al. Pterosaur melanosomes support signalling functions for early feathers. Nature 604, 684–688 (2022).
Hu, D. et al. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Commun. 9, 217 (2018).
Spiekman, S. N. F. et al. Aquatic habits and niche partitioning in the extraordinarily long-necked Triassic reptile. Tanystropheus. Curr. Biol. 30, 3889–3895 (2020).
Schoch, R. R. & Sues, H.-D. A Middle Triassic stem-turtle and the evolution of the turtle body plan. Nature 523, 584–587 (2015).
Schoch, R. R. & Sues, H.-D. Osteology of the Middle Triassic stem-turtle Pappochelys rosinae and the early evolution of the turtle skeleton. J. Syst. Paleontol. 16, 927–965 (2018).
Gaffney, E. S. The comparative osteology of the Triassic turtle Proganochelys. Bull. Am. Mus. Nat. Hist. 194, 1–263 (1990).
Pritchard, A. C., Gauthier, J. A., Hanson, M., Bever, G. S. & Bhullar, B.-A. S. A tiny Triassic saurian from Connecticut and the early evolution of the diapsid feeding apparatus. Nat. Commun. 9, 1213 (2018).
Scheyer, T. M. et al. Colobops, a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite. R. Soc. Open Sci. 7, 1–14 (2020).
Pritchard, A. C. & Sues, H.-D. Postcranial remains of Teraterpeton hrynewichorum (Reptilia: Archosauromorpha) and the mosaic evolution of the saurian postcranial skeleton. J. Syst. Paleontol. 17, 1745–1765 (2019).
Goloboff, P. A. & Morales, M. E. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 39, 144–153 (2023).
Goloboff, P. A. Extended implied weighting. Cladistics 30, 260–272 (2014).
Ezcurra, M. D. Exploring the effects of weighting against homoplasy in genealogies of palaeontological phylogenetic matrices. Cladistics 40, 242–281 (2024).
Goloboff, P. A., Torres, A. & Arias, J. S. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–437 (2018).
Spiekman, S. N. F., Ezcurra, M. D., Butler, R. J., Fraser, N. C. & Maidment, S. C. R. Pendraig milnerae, a new small-sized coelophysoid theropod from the Late Triassic of Wales. R. Soc. Open Sci. 8, 210915 (2021).
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
Ogg, J. G., Chen, Z.-Q., Orchard, M. J. & Jiang, H. S. in Geologic Time Scale 2020 Vol. 2 (eds Gradstein, F. M. et al.) Ch. 25 (Elsevier, 2020).
Butler, R. J. et al. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation. PLoS ONE 6, e25693 (2011).
Aretz, M. et al. in Geologic Time Scale 2020 Vol. 2 (eds Gradstein, F. M. et al.) Ch. 23 (Elsevier, 2020).
Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electronica 18, 1–106 (2015).
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
Spiekman, S. N. F. Earliest evidence of ‘feather-like’ integumentary structures in a Middle Triassic stem-diapsid. [Dataset]. European Synchrotron Radiation Facility https://doi.org/10.15151/ESRF-ES-899271212 (2025).
Weitkamp, T., Haas, D., Wegrzynek, D. & Rack, A. ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J. Synchrotron Radiat. 18, 617–629 (2011).
Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).
Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. & Kieffer, J. The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res. B 324, 41–48 (2014).
Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002).