Monday, July 28, 2025
No menu items!
HomeNatureTriassic diapsid shows early diversification of skin appendages in reptiles

Triassic diapsid shows early diversification of skin appendages in reptiles

  • Ji, Q., Luo, Z.-X., Yuan, C.-X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. et al. Pterosaur integumentary structures with complex feather-like branching. Nat. Ecol. Evol. 3, 24–30 (2019).

    PubMed 

    Google Scholar
     

  • Lowe, C. B., Clarke, J. A., Baker, A. J., Haussler, D. & Edwards, S. V. Feather development genes and associated regulatory innovation predate the origin of Dinosauria. Mol. Biol. Evol. 32, 23–28 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Buchwitz, M. & Voigt, S. The dorsal appendages of the Triassic reptile Longisquama insignis: reconsideration of a controversial integument type. Palaontol. Z. 86, 313–331 (2012).


    Google Scholar
     

  • Jones, T. D. et al. Nonavian feathers in a Late Triassic archosaur. Science 288, 2202–2205 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reisz, R. R. & Sues, H.-D. The ‘feathers’ of Longisquama. Nature 408, 428–428 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharov, A. G. [Unusual reptile from the Lower Triassic of Fergana]. Paleontol. Zh. 1, 127–131 (1970).


    Google Scholar
     

  • Renesto, S., Spielmann, J. A., Lucas, S. G. & Spagnoli, G. T. The taxonomy and paleobiology of the Late Triassic (Carnian-Norian: Adamanian-Apachean) drepanosaurs (Diapsida: Archosauromorpha: Drepanosauromorpha). Bull. New Mexico Mus. Nat. Hist. Sci. 46, 1–81 2010).


    Google Scholar
     

  • Dhouailly, D. et al. Getting to the root of scales, feather and hair: as deep as odontodes? Exp. Dermatol. 28, 503–508 (2019).

    PubMed 

    Google Scholar
     

  • Di-Poï, N. & Milinkovitch, M. C. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. Sci. Adv. 2, e1600708 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musser, J. M., Wagner, G. P. & Prum, R. O. Nuclear β‐catenin localization supports homology of feathers, avian scutate scales, and alligator scales in early development. Evol. Dev. 17, 185–194 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Widelitz, R. B., Veltmaat, J. M., Mayer, J. A., Foley, J. & Chuong, C.-M. Mammary glands and feathers: comparing two skin appendages which help define novel classes during vertebrate evolution. Semin. Cell Dev. Biol. 18, 255–266 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millar, S. E. Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118, 216–225 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Dalla Valle, L. et al. β‐keratins of the crocodilian epidermis: composition, structure, and phylogenetic relationships. J. Exp. Zool. B Mol. Dev. Evol. 312, 42–57 (2009).

    PubMed 

    Google Scholar
     

  • Gall, J.-C. Faunes et paysages du Grès à Voltzia du Nord des Vosges. Essai paléoécologique sur le Buntsandstein supérieur. Mémoires du Service de la Carte géologique d’Alsace et de Lorraine 34, 1–318 (1971).

  • Pritchard, A. C. & Nesbitt, S. J. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida. R. Soc. Open Sci. 4, 170499 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renesto, S. & Dalla Vecchia, F. M. The skull and lower jaw of the holotype of Megalancosaurus preonensis (Diapsida, Drepanosauridae) from the Upper Triassic of Northern Italy. Riv. Ital. Paleontol. Stratigr. 111, 247–257 (2005).


    Google Scholar
     

  • Buffa, V., Frey, E., Steyer, J.-S. & Laurin, M. ‘Birds’ of two feathers: Avicranium renestoi and the paraphyly of bird-headed reptiles (Diapsida: ‘Avicephala’). Zool. J. Linn. Soc. 202, zlae050 (2024).


    Google Scholar
     

  • Renesto, S. & Binelli, G. Vallesaurus cenensis Wild, 1991, a drepanosaurid (Reptilia, Diapsida) from the Late Triassic of northern Italy. Riv. Ital. Paleontol. Stratigr. 112, 77–94 (2006).


    Google Scholar
     

  • Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiekman, S. N. F., Fraser, N. C. & Scheyer, T. M. A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other “protorosaurs”, and its implications for the early evolution of stem archosaurs. PeerJ 9, e11143 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, S. E. in Biology of the Reptilia Vol. 20 (eds Gans, C. et al.) Ch. 1 (Society for the Study of Amphibians and Reptiles, 2008).

  • Moon, B. C. & Kirton, A. M. Ichthyosaurs of the British Middle and Upper Jurassic Part 1. Ophthalmosaurus. Monogr. Palaeontogr. Soc. 170, 1–84 (2016).


    Google Scholar
     

  • Rieppel, O. Sauropterygia I: Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea. Handbuch der Paläoherpetologie Vol. 12A (Verlag Dr. Friedrich Pfeil, 2000).

  • Colbert, E. H. & Olsen, P. E. A new and unusual aquatic reptile from the Lockatong Formation of New Jersey (Late Triassic, Newark Supergroup). Am. Mus. Novit. 2001, 1–24 (2001).


    Google Scholar
     

  • Pritchard, A. C., Turner, A. H., Irmis, R. B., Nesbitt, S. J. & Smith, N. D. Extreme modification of the tetrapod forelimb in a Triassic diapsid reptile. Curr. Biol. 26, 1–8 (2016).


    Google Scholar
     

  • Hopson, J. A. in New Perspectives on the Origin and Early Evolution of Birds: Proc. of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J. & Gall, I. F.) Ch. 12 (Peabody Museum of Natural History, 2001).

  • Spiekman, S.N.F. et al. Supplementary Files to ‘Triassic diapsid shows early diversification of skin appendages in reptiles’. Figshare https://doi.org/10.6084/m9.figshare.27083092 (2025).

  • Chang, C. et al. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. Int. J. Dev. Biol. 53, 813 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, B., Yang, W., Sherman, V. R. & Meyers, M. A. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 41, 60–74 (2016).

    PubMed 

    Google Scholar
     

  • Edwards, N. P. et al. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy. Sci. Rep. 6, 34002 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature 507, 350–353 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, V., McNamara, M. E., Webb, S. M., Ito, S. & Wakamatsu, K. Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates. Proc. Natl Acad. Sci. USA 116, 17880–17889 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wogelius, R. A. et al. Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333, 1622–1626 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, V., Webb, S. M. & McNamara, M. E. Hierarchical biota-level and taxonomic controls on the chemistry of fossil melanosomes revealed using synchrotron X-ray fluorescence. Sci. Rep. 10, 8970 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, A. et al. in Pennaraptoran Theropod Dinosaurs Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) Ch. 9 (American Museum of Natural History, 2020).

  • Pritchard, A. C., Sues, H.-D., Scott, D. & Reisz, R. R. Osteology, relationships and functional morphology of Weigeltisaurus jaekeli (Diapsida, Weigeltisauridae) based on a complete skeleton from the Upper Permian Kupferschiefer of Germany. PeerJ 9, e11413 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simões, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706–709 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Ezcurra, M. D., Scheyer, T. M. & Butler, R. J. The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLoS ONE 9, e89165 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caro, T. Antipredator deception in terrestrial vertebrates. Curr. Zool. 60, 16–25 (2014).


    Google Scholar
     

  • Grauvogel-Stamm, L. La flore du Grés à Voltzia (Buntsandstein supérieur) des Vosges du Nord (France): morphologie, anatomie, interprétations phylogénique et paléogéographique. Sci. Géologiques, Bull. et. Mémoires 50, 1–225 (1978).


    Google Scholar
     

  • Lucas, A. M. & Stettenheim, P. R. Avian Anatomy. Integument, Part I and II (US Government Printing Office, 1972).

  • Prum, R. O. Development and evolutionary origin of feathers. J. Exp. Zool. B Mol. Dev. Evol. 285, 291–306 (1999).

    CAS 

    Google Scholar
     

  • Benton, M. J. The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Res. 100, 261–289 (2021).

    ADS 

    Google Scholar
     

  • Benton, M. J., Dhouailly, D., Jiang, B. & McNamara, M. The early origin of feathers. Trends Ecol. Evol. 34, 856–869 (2019).

    PubMed 

    Google Scholar
     

  • Olsen, P. et al. Arctic ice and the ecological rise of the dinosaurs. Sci. Adv. 8, eabo6342 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babarović, F. et al. Characterization of melanosomes involved in the production of non-iridescent structural feather colours and their detection in the fossil record. J. R. Soc. Interface 16, 20180921 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cincotta, A. et al. Pterosaur melanosomes support signalling functions for early feathers. Nature 604, 684–688 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, D. et al. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Commun. 9, 217 (2018).

  • Spiekman, S. N. F. et al. Aquatic habits and niche partitioning in the extraordinarily long-necked Triassic reptile. Tanystropheus. Curr. Biol. 30, 3889–3895 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schoch, R. R. & Sues, H.-D. A Middle Triassic stem-turtle and the evolution of the turtle body plan. Nature 523, 584–587 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoch, R. R. & Sues, H.-D. Osteology of the Middle Triassic stem-turtle Pappochelys rosinae and the early evolution of the turtle skeleton. J. Syst. Paleontol. 16, 927–965 (2018).


    Google Scholar
     

  • Gaffney, E. S. The comparative osteology of the Triassic turtle Proganochelys. Bull. Am. Mus. Nat. Hist. 194, 1–263 (1990).


    Google Scholar
     

  • Pritchard, A. C., Gauthier, J. A., Hanson, M., Bever, G. S. & Bhullar, B.-A. S. A tiny Triassic saurian from Connecticut and the early evolution of the diapsid feeding apparatus. Nat. Commun. 9, 1213 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheyer, T. M. et al. Colobops, a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite. R. Soc. Open Sci. 7, 1–14 (2020).


    Google Scholar
     

  • Pritchard, A. C. & Sues, H.-D. Postcranial remains of Teraterpeton hrynewichorum (Reptilia: Archosauromorpha) and the mosaic evolution of the saurian postcranial skeleton. J. Syst. Paleontol. 17, 1745–1765 (2019).


    Google Scholar
     

  • Goloboff, P. A. & Morales, M. E. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 39, 144–153 (2023).

    PubMed 

    Google Scholar
     

  • Goloboff, P. A. Extended implied weighting. Cladistics 30, 260–272 (2014).

    PubMed 

    Google Scholar
     

  • Ezcurra, M. D. Exploring the effects of weighting against homoplasy in genealogies of palaeontological phylogenetic matrices. Cladistics 40, 242–281 (2024).

    PubMed 

    Google Scholar
     

  • Goloboff, P. A., Torres, A. & Arias, J. S. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–437 (2018).

    PubMed 

    Google Scholar
     

  • Spiekman, S. N. F., Ezcurra, M. D., Butler, R. J., Fraser, N. C. & Maidment, S. C. R. Pendraig milnerae, a new small-sized coelophysoid theropod from the Late Triassic of Wales. R. Soc. Open Sci. 8, 210915 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogg, J. G., Chen, Z.-Q., Orchard, M. J. & Jiang, H. S. in Geologic Time Scale 2020 Vol. 2 (eds Gradstein, F. M. et al.) Ch. 25 (Elsevier, 2020).

  • Butler, R. J. et al. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation. PLoS ONE 6, e25693 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aretz, M. et al. in Geologic Time Scale 2020 Vol. 2 (eds Gradstein, F. M. et al.) Ch. 23 (Elsevier, 2020).

  • Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electronica 18, 1–106 (2015).

    ADS 

    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiekman, S. N. F. Earliest evidence of ‘feather-like’ integumentary structures in a Middle Triassic stem-diapsid. [Dataset]. European Synchrotron Radiation Facility https://doi.org/10.15151/ESRF-ES-899271212 (2025).

  • Weitkamp, T., Haas, D., Wegrzynek, D. & Rack, A. ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J. Synchrotron Radiat. 18, 617–629 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. & Kieffer, J. The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res. B 324, 41–48 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments